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Efficient numerical analysis of guided wave structures
by compact FDFD with PVL method
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Abstract: An efficient numerical simulation technique is introduced to extract the propagation characteristics
of a millimeter guided wave structure. The method is based on the application of the Krylov subspace model
order reduction technique (Padé via Lanczos) to the compact finite difference frequency domain (FDFD)

method. This new technique speeds up the solution by decreasing the originally larger system matrix into one
lower order system matrix. Numerical experiments from several millimeter guided wave structures demonstrate

the efficiency and accuracy of this algorithm.
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Accurate modeling and simulation of millimeter
guided wave structures are very important and
indispensable in microwave engineering designs. A
compact finite difference frequency domain (FDFD)
algorithm, which uses a two-dimensional mesh to
contain six field components for realistic three-
dimensional wave guided structures, has been proven
to be an efficient technique for performing such
simulations'" . Despite the fact that the compact FDFD
method requires less central processing unit (CPU)
time and dramatically reduced computer memory
compared to the regular 3-D FDFD method, this
approach still needs to solve a large sparse matrix
many times if wide band frequency information is
required.

To improve the computational efficiency of
general wide band frequency structures, several papers
have proposed using fitting modelingm. These
techniques used efficient interpolation/extrapolation
techniques to predict a wide band frequency response
based on a reduced number of simulations. However,
these works have not fully utilized the system
equation that represents the system to be simulated. To
take advantage of the information that is contained in
the system equation, model order reduction (MOR)
techniques have been developed. It was originally
developed for very large scale integration (VLSI) type
circuit analysis and has been recently extended to the
electromagnetic (EM) simulation fields2 ™. Among
them, asymptotic waveform evaluation (AWE)"’,
which uses moment matching and Padé approximation
to approximate the transfer function of a large linear
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system, is straightforward and can be implemented in
the EM field simulation efﬁciently:”. Even though
AWE can achieve good accuracy and efficiency, it
suffers from numerical instability if higher order
approximation is required[si. In addition, for higher
order systems, there is a large computational overhead
to generate the moments to represent the original
systems.

In order to overcome such issues associated with
the AWE technique, Padé (PVL)
algorithm, one of the Krylov subspace-based methods,
was used in the electromagnetic simulation to reduce
the original large linear equation matrix over a board
frequency range'®*’. In most of the works, PVL has
been proven to be an efficient model order reduction
technique due to its robustness and accuracy.

via Lanczos

1 Theory and Formulae

1.1 Compact FDFD

Due to the invariance in the propagation
direction of guided wave structures, the phases
associated with electromagnetic fields have the form
of A(x, y, z) =A(x, y)exp( - jBz). For a
propagation constant 8 in the z direction, it is easy to
show that Maxwell’s equation can be written as
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where w is the angular frequency, ¢ is the permittivity
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and y is the permeability. By using Eq.(1), electric
fields (E,,E,,E.) and magnetic fields (H,,H, , H,)
can be arranged in a Yee’s cell as described in Ref.
[3]. Using the finite difference method, we can
represent the above equations by

Ax =b 2)
where the matrix A is associated with the finite
difference scheme, the vector b is determined by
external excitations, and the vector x represents
electric and magnetic fields at FDFD grid point. To
extract the propagation
characteristics, for each propagation constant value,

Eq.(2) needs to be solved many times to extract
[1,2]

frequency  dependent

modes’ eigen-frequencies
1.2 PVL method

Rather than repeatedly solve the system Eq.(2) at
many distinct frequency points, the PVL technique
allows us to approximate a system frequency response
using several expansion points. Before applying this
technique, Eq.(1) needs to be reformulated as

(sC+G)x(s) =e(s) 3)
where x(s) = {H,(s), H (s), H (s), E(s),
E (s), E.(s) 1T, C is a diagonal matrix and s = jw,
G is also a sparse matrix whose element’s values are
associated with the finite difference scheme, and e(s)
is related to external sources.

The first step in the PVL process is to expand
x(s) around a point in the s-plane. Set s = s, + &,
where s, is the expansion point in the s plane. Thus
Eq.(3) can be converted into

x(s) =(G+s5,C+8C) 'e=

[(G+5,C)(I+6(G+5,C)'C)] 'e=
[I1+8(G +5,C)'C] ' (G+5,C) e “)
Define

A= - (G+5,C)'C, r=(G+5,C) e ®)
We can rewrite x(s) as

x(s,+8) =(I-8A) 'r ©)

The PVL algorithm uses the Krylov subspace
based method to reduce the matrix A to a set of tri-

diagonal matrices T, and T ,- After that, the system
frequency response can be found by the Padé
approximation of Refs. [7, 8 ]:

x,(sy+8) =re[(I1-8T,) e, (7)
which is the g-th order Padé approximation of x(s)
and e, = {1, 0, -, 0} . The tri-diagonal matrix T,
can be decomposed as

T,=SA,S q’l
where A, is a diagonal matrix whose elements

correspond to system eigenvalues and S, is a matrix
consisting of system eigenvectors. Therefore the

equation can be rewritten as
x,(sy+0) =relTSI(I—a'Aq)_lS([_Ie, ®)

Setu' =e/ S:, v = Sq’] e, and then the final
reduced order model equation can be obtained:
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where the term K, represents the value of x, (s, + o)
when A is zero. The whole PVL process is as follows:
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4) Carry on a decomposition of T,
T,=S,diag(A,, Ay, ==, A,)S,"
and set :S;:‘e1 LV =Sq’le1, where ¢, = {1, 0, .-
0}7..
5) Calculate the poles and residues of x,.

2 Numerical Results

The first example we considered here is an air-
filled rectangular waveguide with a width of 19.05
mm and a height of 9.525 mm. For each S value in
Fig. 1, we exiract the eigen-frequencies for the first
three propagation modes. In Fig. 1, the propagation
constant as a function of frequency is shown. For
comparison, the analytical resolution is also given. We
can see that the results from PVL/compact FDFD
method agree very well with analytical solution.

The second structure analyzed is the partially
filled inhomogeneous dielectric loaded waveguide as
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shown in Fig. 2. The dimensions of this structure are a
=10.16 mm, b =5.588 mm, ¢ =3.048 mm, d =5.08
mm. The relative permittivity of the slab is &, =8. The
dispersion curves of the first two modes, shown in
Fig.3, are compared to the results in Ref. [1] and a
good agreement can be observed.
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Fig.1 Extracted propagation constant for the first
three modes of a waveguide structure

Fig.2 Cross section of a partially filled inhomogeneous
dielectric loaded waveguide
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Fig.3 Dispersion characteristics of a partially filled
waveguide

The final example considered here is a dual-plane
triple microstrip structure as shown in Fig.4. For this
particular example, the excitation point is located
under the left microstrip line of the lower layer in
order to excite all three propagation modes. The
substrate here is anisotropic and has a relative
permittivity matrix as
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Fig.4 TIllustration of a dual-plane triple microstrip structure

The space between the lower two striplines S =
2.0 mm. Other dimensions defined in Fig.4 are: a =
10.0 mm, b, =b, =1.0 mm, b, =4.0 mm, and W, =W,
=W, =1.0 mm. The normalized propagation constants
of the first three propagation modes are shown in Fig.
5. Again, we can see a good agreement between the
results by PVL/compact FDFD technique and those
from Ref. [10].
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Fig.5 Normalized propagation constant for the three propa-
gation modes of the dual-plane triple microstrip structure

Also the CPU times of different methods for the
above guided wave structures are compared and
shown in Tab.1. These different methods yield almost
identical results. Therefore the comparison of the
accuracies is not given here for the sake of clarity.

Tab.1 CPU time comparison between different methods

CPU time/s
Method Air filled Inhomogeneous ~ Dual plane
waveguide waveguide triple microstrip
FDFD 50 126 612
FDFD/ AWE 38 63 238
FDFD/PVL 31 47 126

3 Conclusion

In this paper, the PVL method has been
implemented in the compact FDFD algorithm. This
new approach uses the Krylov subspace technique to
reduce the original large system equation matrix
generated by the FDFD to a lower order small matrix
and therefore improves the efficiency of the FDFD
simulation. Compared to the AWE method, PVL
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overcomes the bad-condition problem and at the same
time preserves stability and accuracy. However, the
valid frequency expansion region of the PVL
technique is compared to the AWE
technique. An objective in the future is to use the
propagation constant expansion to overcome such
limitations. This efficient propagation expansion will
make the combination of compact FDFD and PVL
more efficient for general millimeter guide wave
simulations.

narrower
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