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Suppression strategy for parametrically excited
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Abstract: This paper discusses a simple way to suppress the parametrically excited lateral vibration of a mass-
loaded string. Supposing that the mass at the lower end of the string is subjected to a vertical harmonic
excitation and neglecting the higher order vibration modes, the equation of motion for the mass-loaded string
can be represented by a Mathieu’s equation with cubic nonlinearity. According to the theory of the Mathieu’s
equation, in the mass-loaded string system, when the vertical vibration frequency of the mass approaches twice
the natural frequency of the string lateral vibration, once the vertical vibration amplitude of the mass exceeds
a critical value, the parametric resonance will occur in the string. To avoid the parametric resonance, a
vibration absorber, composed of a thin beam and two mass blocks attached at both sides of the beam
symmetrically, is proposed to install with the mass to reduce its vertical vibration, and ultimately suppress the
lateral vibration of the string. Such a suppression strategy is finally validated by experiments.
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A mass-loaded string model can be used to study
the dynamic properties of practical systems such as el-
evator, crane, cable-stayed bridge and so on. Due to
some horizontal perturbations, the string may vibrate
laterally. Such lateral vibration usually decays gradu-
ally caused by the existence of damping. However,
under some tuning conditions, the amplitude of the
string lateral vibration may increase due to the para-
metric excitation caused by the coupling between the
vertical and lateral directions. Large-amplitude lateral
vibration of the string not only shortens string life, but
also aggravates the vertical vibration of the mass.

The parametrically excited lateral vibration of a
string-like model has been extensively studied.
Mote'' ' predicted the parametric stability-instability
region boundaries for the axially moving string system
by application of Hsu and Bolotin Methods. Huang, et
al. ¥ presented the dynamic stability of the moving
string in 3-D vibration by using the modal analysis
procedure and the method of multiple scales. Fung, et
al. "*’ used Hamiltonian formulation and an averaging
method to examine the stability behavior of an axially
moving string in the presence of parametric and
combination resonance. Sun, et al. ' developed a
nonlinear dynamic model for investigating the
parametrically excited vibration of stay cables caused
by support motion in cable-stayed bridges. Also for a
cable-stayed bridge, Wei, et al. 7 investigated the
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parametric vibration of one cable-stay using the finite
element method. Zhang and Zu'*? investigated the
dynamic response and stability of parametrically
excited viscoelastic belts, which can be regarded as a
mass-loaded string model in a horizontal direction. In
the elevator field, the lateral vibration of the hoist
rope has also been studied by some researchers " "',
Terumichi, et al. "’ simplified an elevator system to a
physical model composed of a string with time-
varying length, excited sinusoidally by a horizontal
displacement at its upper end and a mass-spring sys-
tem attached at the lower end. They paid attention to
the influences of the axial velocity of the string on the
peak amplitude of the string lateral vibration at the
passage through resonance. Fung and Lin'""’ consid-
ered the lateral vibration of an elevator string excited
by the vibration of the rotor radius due to the winding
of the string either on or off the rotor. Zhu and Tep-
po[m developed a novel scaled model to simulate the
linear lateral dynamics of a hoist cable with variable
length in a high-rise, high-speed elevator.

1 Theoretical Analysis

The schematic diagram of the considered mass-
loaded system is shown in Fig.1, where the string is
hung vertically and the mass is attached to it at the
lower end; in addition, a harmonic excitation is
applied to the mass in the wvertical direction.
Neglecting the higher order vibration modes of the
string, the equations of motion for the mass-loaded

string system can be established as follows'®:
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where X, is the lateral displacement at the midpoint of
the string; X, is the vertical displacement of the mass;
¢, is the damping coefficient for per unit length of the
string; ¢, is the damping coefficient for the mass; £,
A,, L and p are the Young’s modulus, cross section
area, length and linear density of the string, respec-
tively; m is the mass; F; and o are the excitation am-

plitude and frequency, respectively.
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Fig.1 Schematic diagram of the mass-loaded string system

Because of the nonlinear terms in Egs. (1) and
(2), the dynamic behaviours of the string and the mass
are coupled strongly. Now suppose that the amplitude
of the string lateral vibration is so small that the non-
linear terms in Eqs.(1) and (2) can be neglected (ini-
tially, the lateral vibration of the string is usually very
weak, therefore, such an assumption is reasonable), as
a result, the following two equations are obtained.
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In this case, the steady state response of the mass
can be represented by a harmonic function, in which
the frequency is the same as that of the external
excitation and the amplitude is directly proportional to
the excitation amplitude. Therefore, Eq. (3) is a
Mathieu’s equation. According to the theory of
Mathieu’s equationm: , when the excitation frequency
w 1s equal to about twice the natural frequency of the
string lateral vibration, if the excitation amplitude is
smaller than a certain critical value, the lateral
vibration of the string will decay with time because of
damping; if the excitation amplitude exceeds the
critical value, the lateral vibration of the string will

increase with time until it reaches a relatively large
amplitude, and then the string will keep vibrating
laterally with constant amplitude. The Ilatter case
means that parametric resonance occurs in the string,
which should be avoided in practice.

According to the above analysis, in the mass-
loaded string system, whether parametric resonance
occurs in the string is greatly dependent on the steady
state response of the mass. Even if the vertical
vibration frequency of the mass approaches about
twice the natural frequency of the string lateral
vibration, once the vertical vibration amplitude of the
mass is suppressed below the critical value, parametric
resonance in the string should not occur surely. Next
it will be analytically demonstrated that a dynamic
vibration absorber installed with the mass can
implement such an objective.

The schematic diagram of the mass-loaded string
system with an vibration absorber is shown in Fig.2,
and the equations of motion for the system can be set

up as
2
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where X;, m,, k, and c, denote the displacement, mass,
stiffness and damping for the absorber, respectively; k_
represents the stiffness of the string and k, = EA,/L.
Neglecting the nonlinear term in Eq. (6), the steady-
state solutions to Egs.(6) and (7) can be expressed as
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Fig.2 Mass-loaded string system with the vibration absorber
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According to Eq.(8), when ./k,/m, =w and ¢, =
0, X,, =0. In other words, if the natural frequency f,
of the vibration absorber is equal to the excitation
frequency f and the damping for the vibration
absorber is equal to zero, the vertical vibration of the
mass at the lower end of the string will be greatly
suppressed, and thus the lateral vibration of the mass-
loaded string is also suppressed. Since parametric
resonance most likely occurs when fis close to 2f;, in
order to avoid the parametric resonance in the string,
f, only requires to approach 2f,. Once the parametric
resonance phenomena are eliminated, the transient
lateral vibration of the string always decays gradually
because of damping. Therefore, to install a vibration
absorber with the mass is a feasible way to suppress
the lateral vibration of the mass-loaded string.

2 Experimental Study

In this section, the description about the dynamic
behavior of the mass-loaded string and the feasibility
of the absorber in suppressing the string lateral vibra-
tion are to be validated by some experiments. Fig.3
shows the schematic diagram of the experimental
mass-loaded string system, which mainly consists of
two vertical suspending strings and a frame attached at
the lower end. To ensure that the frame vibrates in a
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Fig.3 Schematic diagram of the experimental system
without absorber
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vertical direction, guide rails are arranged on both
sides of the frame. In addition, two shakers are
installed with the frame to serve as the wvertical
excitation, and a function generator supplies harmonic
signals. Between the function generator and the
shaker, there is a power amplifier. The motion images
of the strings are captured by two CCD cameras, and
the motion data in the CCD cameras are transmitted
into a computer so that the dynamic behaviors of the
string can be analyzed via Matlab software. Tab. 1
shows the basic information of the main devices in the
experimental system.

Tab.1 Basic information about the devices in the
experimental system

Instrument name Type

Shake APS MODEL 113

SONY XC-75

IC SENSORS MODEL 3140-002
YOKOGAWA FC110

HIOKI MEMORY HICORDER 8855

CCD camera
Accelerometer
Function generator
Data recorder

P lifi
ower ampulier TECHRON 5530
(for the function generator)

Power amplifier
DEICY MA _101DC
(for the accelerometer)

The basic parameters of the experimental system
are as follows: m =296.5 kg (here m includes the
mass of the frame and the two shakers), L =14.4 m, E
=132 GPa, A, =72.4 mm’, p =0.68 kg/m, ¢, =0.046
and ¢, =0.15 Pa. According to these parameters, the
natural frequencies of the string and mass can be
calculated by the following two expressions, as a
result, . =2.27 Hz, f, =7.53 Hz.

w_ﬁ f (10)

Make the function generator generate a harmonic
function and tune its frequency to about 4.54 Hz.
When the amplitude of the harmonic function is
smaller than a critical value, the string vibrates
slightly, shown in Fig. 4 (In this case, the output
voltage from the function generator is 0.2 V). After
the amplitude of the harmonic function is adjusted, it
exceeds the critical value, the lateral vibration of the
string takes on an emanative tendency, as shown in
Fig. 5 (Here, the output voltage from the function
generator is 0.4 V). In this case, the parametric
resonance occurs in the string. However, the amplitude
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of the string lateral vibration does not increase
infinitely, and the string eventually vibrates with a
relatively large constant amplitude, as shown in Fig.6.
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Fig.6 Large constant amplitude lateral vibration of the string

According to section 1, a vibration absorber
installed with the frame at the lower ends of the
strings can suppress the parametric resonance in the
present experiment system. Theoretically, a spring-
mass system can play a role of vibration absorber.
However, to avoid the mass in the absorber from
swaying in the horizontal direction, in this experiment,
a beam-mass structure is adopted (see Fig.7). The
main parameters of the absorber are as follows: m, =
1.5kg, b, =70 mm, h, =2 mm, L, =0.64 m, p, =7.86
x10° kg/m’, E, =209 GPa. Here, b, h,, L, p, and E,
are the width, thickness, length, density and the
Young’s modulus of the beam, respectively. Before

installing the absorber with the frame, the position of
the mass has been properly adjusted along the beam
so that the natural frequency of the absorber is equal
to twice the natural frequency of the string first order
lateral vibration, i.e., f, =2f, =4. 54 Hz.
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Fig.7 Schematic diagram of the experimental frame
with the absorber

Fig.8 shows the displacement at the midpoint of
the string before and after the absorber is installed
within the frame. The two curves in Fig.8 are obtained
under the same harmonic excitation, i.e., the frequency
of the harmonic function is about 4.54 Hz and the
output voltage from the function generator is 0.4 V. It
is seen from Fig.8 that parametric resonance occurs in
the case of no absorber and parametric resonance does
not occur when the absorber is installed with the
frame. In fact, the positive effect of the absorber in
suppressing the lateral vibration of the string has been
validated by many experiments. However, all the other
experimental results have neglected to save space.
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Fig.8 Lateral vibration of the string before and after
the absorber is installed

3 Conclusion

In the mass-loaded string system, due to the



Suppression strategy for parametrically excited lateral vibration of mass-loaded string

169

coupling between the vertical vibration of the mass
and the lateral vibration of the string, when the
vertical vibration frequency of the mass approaches
about twice the natural frequency of the string lateral
vibration, once the vertical vibration amplitude of the
mass exceeds a critical value, parametric resonance
will occur in the string, which induces the string to
vibrate with large amplitude in the lateral direction. To
avoid such harmful phenomena, it is proposed that a
vibration absorber should be installed with the mass at
the lower end of the string, and the natural frequency
of the absorber should be equal to twice the natural
frequency of the string lateral vibration. Such a
suppression strategy has been validated theoretically
and experimentally.
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