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Contour extraction and curvature calculation
for fragment reassembly
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Abstract: The Canny edge detector inevitably misses some important and obvious edges during contour
extraction, which causes gaps in the contour. We propose a geometric method to locate, measure and fill the

gaps precisely. With the complete contour information, we present a convolution approach, which utilizes an
appropriate linear interpolation to resample the contour to calculate pointwise curvature. This approach
distributes discrete points within a convolution window uniformly. It ensures a one-to-one correspondence
between every point and its weight, thus the accuracy is guaranteed under this condition. A related parameter
selection is also suggested. Experimental results show that the proposed methods are robust and accurate.
Key words: contour extraction; curvature calculation; convolution integral; discrete points

The basic task in computer-aided reconstruction
of archaeological finds or other similar objects is to
reassemble broken objects automatically. Extracting
contours and calculating curvatures are two essential
aspects in the assembly process. Since the 2-D broken
piece is globally and locally represented by its closed
contour, and the 3-D fragments can be described
completely by its contour or ridge together with its
surface facet. Meanwhile, curvature can uniquely
define the 2-D contour and, in connection with
torsion, it can also represent the 3-D contour exactly.
Curvature and torsion are efficient, highly descriptive
features of geometric objects. For a twice-
differentiable curve, the curvature at a point can be
expressed in terms of the first and the second
derivatives of the curve at that point. No such simple
definition exists for a digital curve. This paper deals
with extracting contours from scanned images and
calculating pointwise curvatures of the extracted
contour. The main effort prepares for reassembly of
the 2-D fragments, which can be used in mural
paintings and approximately in flat potsherds.

For contour extraction, previous work of Refs.
[1,2] was to track an intensity level curve between
the background and the fracture surfaces. This
algorithm is frequently confused in some practical ap-
plications because of its ideal assumption, namely, the
foreground color §,,, is a constant. Ref. [ 3] ignored
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the process of data acquisition and just assumes a
binary representation of each piece is available.

Curvature calculation for discrete contours has
been done mainly on two aspects. Medioni, et al. s
proposed to use a parametric cubic B-spline for
representing a boundary curve and then calculate the
corresponding curvature. Vialard"®' constructed the
model of Euclidean paths, which was a semi-
continuous representation of the underlying real
discrete curve. The correlative curvature is calculated
according to this model. These methods are based on
constructing a continuous or semi-continuous model
to represent the discrete contour. Other categories of
methods tried to use some simple methods to
approximate digital curvature, e.g. Wolfson'”’ adopted
the arc-length versus total turning angle graph, namely
0(s), to describe a curve. Chetverikov '’ implemented
a technique to show high curvature points in planar
curves via triangles with specified opening angles.
Their methods show critical points of the contour
without specific curvature values. In addition, these
methods are typically sensitive to noise.

Based on the Canny edge detector we developed
a geometric method to obtain the contour of a
fragment automatically and accurately, and then
presented a convolution approach to the problem of
curvature calculation for discrete points.

The Canny approach is one of the most widely
used in edge detection, but it inevitably misses some
important and obvious edges during boundary
detection'®’. The missed edges cause gaps in the
object contour. They make feature computation about
curvature and perimeter almost impossible, to say
nothing of contour matching or fragment reassembly.
In this paper, we propose a method to find the
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locations of missed edges and fill in the gaps
according to the orientation of the original contour.
After being processed by this method, the discrete
contour is convolved with a Gaussian kernel, which
makes it feasible to remove the noise of the contour
and calculate the curvature simultaneously.

The accuracy of curvature computation is a key
issue in the contour description. An appropriate linear
interpolation is developed to resample the discrete
contour while ensuring the precision of the curvature
computation. In addition, parameter selection in the
curvature calculation is also proposed. The signifi-
cance of all these works is that it alleviates the prob-
lem of fragment reassembly and makes it feasible.

1 Contour Extraction

The Canny operator can detect an overwhelming
majority of the boundaries. However, if the gradient
magnitude of edges is the local maximum in the
image, while it is not in the gradient direction, it will
not be picked up''*’. So these edges are missed, which
causes gaps in continuous edges (see Figs.1 (a) and
(b)). A geometric method is presented to solve this
problem. The first step is to assign specific
coordinates for every detected edge point. The
algorithm is as follows:

Step 1  Select an arbitrary point P, on the
contour as starting point.

Step 2 Suppose P, is a center point, find the
point P, , with the smallest distance to P,. The coor-

(b)
Fig.1 Two contours extracted from their corresponding
digital images by Canny edge detector, some obvious ed-
ges are missed. (a) Contour I ; (b) Contour II

dinates of P,,, can be calculated according to the
distance, and then labeled P, , checked.

Step 3  Select P,,, as the current center point,
find the closest point P,,, in its neighborhood.
Calculate the coordinates of P,,, and label them P, _,.

Step 4 Repeat step 2 and step 3 until all the
edge points have been labeled.

Step 5 Store all of the edge points in an array.

Then we check each pair of adjacent points
P.(x;,y,) and P, ,(x;,,, ¥,,,) in the array. If the
relationship between the two points accords with any
of the following three conditions, we will think there
are missed edges. In other words, if the distance
between two adjacent points is more than 1 or 2, it
means some points among them are not detected,
which results in gaps.

® X, =X, ¥;7 ¥, and ‘yi+l -yl >1;

® Y, =Y, %7 x;, and ‘xi+l X ‘ >1;

o X, F X, )i 7 Y. and ‘x,:ﬂ
|yi+] _yz" >2.

Once the gap is found, it should be filled
according to the orientation of the gap. Being
processed by this method, the boundary information is
clear and complete (see Figs.2 (a) and (b)). Then we
utilize a convolution integral to compute curvature.

x| +

(b)
Fig.2 Two extracted contours processed by the geometric
method, all gaps are filled exactly. (a) Contour I; (b) Contour Il

2 Convolution Integral with Gaussian

Given an arbitrary function f; (¢) and another
function f, (¢), the convolution integral of f, (¢) and
f, (1) is as follows'":
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g0 = £ * (D) = [ (DA -7) dr

The integral range — o to + oo is suitable for any
generic function. If the function is definite, the range
is decided by the function’s domain. A significant
property of convolution lies in that the mapping will
have the same smoothness, if the kernel has some
smoothness. For this reason, we select Gaussian
distribution function Eq. (1) as the kernel and
convolve with the discrete contour, which may be
considered as an arc-length domain signal.

1 2
G(u, o) = e’ (1)
oV2w
Accordingly, the convolution of two functions is
defined as

Flu, o) = [ f(0)

(u-1)2

7 dy
o2

Fig.3 illustrates the convolutlon process further.

F(u) clu-1)

Discrete contour

Fig.3 Discrete point contour and convolution of Gaussian kernel

It is shown that, for a set of discrete points,
Gaussian distribution assigns relevant weight factors
without exception, whereas the weights are quite
different. Suppose P, is a center point, the
corresponding weight of P, is the largest. The weights
of its neighbor points decrease with the increase of
distance between the selected point P, and the center
point P,. As the distance becomes larger, the weight
will gradually reduce to zero. The meaning is obvious,
for the point is so far away from the center, that it
contributes no effect to the local character of the
center point. The convolution process also indicates
that its essence is weighted averaging. Therefore, the
convolution can be expressed as

Aw)z
F(u, o) = 2 Ap (2)
s o
_lemn?
where e * is the weight factor and Av is
o/2m

the step. If the convolution is done in different scales
parameter o, which makes it feasible to smooth the
same outline in different scales, then an evolved
version of the curve is formed naturally.

Based on the property of the Gaussian kernel, we

use a truncation parameter m to specify the size of the
smoothing neighborhood. For the purpose of
minimizing the truncation error, in our work, m is set
according to Eq.(3) which is larger than 3¢.

m= ln( 2“-2) (3)

oe
where & is the given tolerance. Hence,

u+m B w—-v 2

F(u, o) = Zf( ) e 22 Ay
u-m 211'

(u-v) el -m, mJ
We finally introduce a property of the

convolution that will be used later.
F'(0) =" (0)* (1) =/ ()* /' (1) (4)
F'(e) =£"(0)* f,(¢) =/ (0)* /,"(1) (5)
The proof is very simple, so it is not addressed
here.

3 Curvature Calculation

A planar curve is the track of point when it
moves with time. Without loss of generality, the curve
can be represented by a vector equation as

r=r(t) ={x(t), y(t)} te(a, B)

The curvature of a curve at any point is defined as the
rate of change in tangent vector direction with respect
to arc length s. The formulization is'?!

=X 0y (1) x”(t)y’(t)

[x2() +y7 (1) ]*

For a discrete contour r = {x(u), y(u)}, where u is
an arbitrary parameter, let x(u), y(u) convolve with
the Gaussian kernel respectively.

={X(u, o), Y(u, o)}
where X (u, o) =x(u) * G(u, o),
y(u) * G(u, o).
Then curvature of the curve r, is'

K(u, o) =

X,(u, )Y, (u, o)

[X,(u, 0)* +Y,(u, 0)*]7
Utilizing the convolution property in Eq.(4) or (5), we
can infer that

X,(u, @) =2 () * G(u, o) =x(u) *

Y(u, o) =

13]

-X,.(u, )Y, (u, o)

uun

u+m

G(us o) = 3 x| (”ﬁ?]

u—m

T Av

X, (u, o) = 2(%(u) *G(u, o)) =x(u) *

u+m

(u —1})2 —0'2] C(u-0)2

G = 2 A
L, o) = z<>[ = ’

Y (u, o) = (y(w) *c<u, ) =y(u) »

) S Av

u+m

C(u, 0)= 3 (v >[

u m
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Y, (u, o) =§<y<u> % Glu, 0)) =y(u) *

Colu, )= Y y(v)[%]e

u-m

AHZ;—;)ZAU
Considering x (v) and y(v), we put forward a
linear interpolation method to obtain the correspond-
ing value.
Given two points P, and P,,, the inserted point
P, is decided by Eq.(6).

s - iD[i}
Pr=11-7 =— it
ZBDM - Z{)D[i]
s - zj:D[i]
— = P, (6)

> DLi] - Y Dli]

1=0 i=0
where s is the interval between the inserted point and
the center point, j is the function of s. The value of D
[i] is the distance between two adjacent points, such
as P;and P,,,. In other words, the linear interpolation

method is a process to resample the outline, which
distributes discrete points within convolution window
uniformly. With the variance of the step Av in Eq.(2),
changed

the number of resampled points is
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accordingly. This method also ensures every point and
its weight is one-to-one correspondence. The precision
of curvature calculation is guaranteed under this
condition.

4 Experimental Results

Depending on the pointwise curvature of a curve
and its arc length, we can draw a curvature graph
about the related contour. In order to evaluate the
quality of the curvature estimation, we utilize the
curvature graph to detect corners; at the same time we
pay attention to the effects of different parameter
selections. Firstly we give the results when the
truncation parameter m =3¢ and the step Av =2 (see
Figs.4 and 5). It is obvious that false corners are
detected and not all true corners are detected. This
result means that curvature under this condition is not
good enough to be used.

Then we adjust the size of the smoothing
neighborhood and set m according to Eq.(3) (see Figs.
6 and 7).

Results are improved from those in the last
experiment, but there are still overlapping corners. We
decrease the step Av to resample the contour again
(see Figs.8 and 9).
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Fig.4 Contour | curvature graph and its corner detection (o =4, m =12, Av =2)
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Fig.5 Contour Il curvature graph and its corner detection (o =4, m =12, Ay =2)
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Fig.6 Contour I curvature graph and its corner detection (o =4, m =39.995, Av =2)
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Fig.7 Contour Il curvature graph and its corner detection (o =4, m =39.995, Ay =2)
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Fig.8 Contour I curvature graph and its corner detection (o =4, m =39.995, Av =0.8)
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Fig.9 Contour Il curvature graph and its corner detection (o =4, m =39.995, Av =0.8)

~

We find that there are no overlapped corners in clear and compact.
Fig.8 and Fig.9 and the localization of corner point is Since the value of parameter ¢ is changeable, the
also perfect. It illuminates that the parameter selection same contour can be described at different scales. As
is good and meanwhile the curvature calculation is o varies from small to large, we can depict the

precise. Accordingly, the description of contour is contour from fine to coarse levels. An optimal value
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of o should be able to filter noise from the contour,
while at the same time preserve small-scale details. In
our experiments, when o =4, the corresponding result
is better than all the others.

5 Conclusion

Fragment reassembly depends on the availability
of good edge data. The approach of Canny detects the
majority information about fragment contour, but it
misses some obvious and critical edges which may be
potential corners. A geometric method is developed
here to locate the missed edges, measure the gap’s size
and orientation, and then fill the gaps precisely. With
the complete boundary information, a method of dis-
crete curvature calculation is presented. This method
removes noise from the contour, while at the same
time calculates pointwise curvature. It is translationa-
lly and rotationally invariant as well as scale-invariant.
In addition, an appropriate linear interpolation is pro-
posed to resample the contour and make sure of the
result’s precision. Related parameter selection is also
suggested. The robustness of this approach is demon-
strated through examples. Further effort can be made
to utilize the curvature information to reassemble frag-
ments.
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