Journal of Southeast University (English Edition)

Vol. 20

No. 2 June 2004 ISSN 1003—7985

Combined method for fast 3-D finite element modeling
of nondestructive testing signal
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Abstract: A combined method for the fast 3-D finite element modeling of defect responses in nondestructive
testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in
technique, difference field technique and iterative solution technique. Utilizing the zoom-in technique, the
computational zone focuses on a relatively small domain around the defect. Employing the difference field

technique, the axisymmetrical field solution corresponding to the case with no defect can be used to simplify

the mesh generation and obtain the modeling results quickly. Using the iterative solution technique, the matrix

equation system in the 3-D finite element modeling of nondestructive probe signals can easily be solved. The
sample calculation shows that the presented method is highly effective and can consequently save significant

computer resources.
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Numerical methods, such as finite element meth-
od (FEM) and boundary element method, have been
successfully applied to study many nondestructive tes-
ting (NDT) problems in the past decades''’. Most of
these methods focus on the development of effective
formulations instead of calculation techniques.
However, better effects can be realized if efficient
techniques and effective formulations are developed
together. In most NDT modeling problems, such as
defect response prediction and defect reconstruction,
the linear algebraic equation systems have to be re-
generated and solved repeatedly due to probe’s
moving or defect’s
resources, thus, are required in the multiple solutions

change. Excessive computer

of the equation systems by using available algorithms,
especially in 3-D problems. The development of
effective and efficient calculation techniques to
simplify the numerical modeling would be highly
useful. Indeed a very successful zoom-in technique
has been reported, which requires very limited
computer resource when studying the defect responses
of the 3-D remote eddy current effect’’. The
difference field technique has also been applied in the
fast simulation of eddy current testing signalsm. The
author’s studies show that these techniques can be en-
hanced further to save additional computer resources
in most 3-D FEM modeling of NDT problems by com-
bining an iterative solution technique.
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This paper presents a combined method that
saves a significant amount of computation cost in
modeling 3-D NDT problems. The basic principle of
the techniques is described in detail in this paper. The
modeling of a benchmark problem provided by Ref.
[4] shows that the proposed combined method is
very promising in the simulation of electromagnetic
NDT problems.

1 Combined Technique

1.1 Zoom-in technique

Most NDT problems have three common features
from the viewpoints of both physics and geometry.
The first one is that the field perturbation arising from
probe’s moving or defect’s change occurs only in the
local region around the probe or defect. The size of
the real defect is generally very small compared with
that of the specimen being studied. Hence the influ-
ence of the defect is only noticeable in the vicinity of
the defect. A relatively small region where the pertur-
bation is prominent and distinct may be taken as the
calculation domain if utilizing the feature fully.

The second feature is that most NDT problems
themselves are basically axisymmetrical in absence of
defects, but with an exception at some local region,
such as a fine crack on/in the detected plate or tube.
Fig.1 shows two typical eddy current testing schemes
for metal plate and tube, respectively. They can be
approximately looked upon as axisymmetrical
problems. If the axisymmetrical potential solution
corresponding to the case without defect is taken as a
basic solution, each 3-D field solution with defect will
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be the basic solution being added to a local
perturbation. If one takes full advantage of “close to
axisymmetrical” in numerical simulation, it will be a
great savings of computer resources.
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Fig.1 Two typical eddy current testing schemes. (a) Detec-

ting metal plate with a pancake probe; (b) Detecting metal tube with

a difference probe

The third feature of most NDT problems is that
they can be considered as linear problems because the
fields generated by some detecting probes are
generally too weak to make ferromagnetic specimen
saturated. This means that the detected specimen’s
non-linearity is negligible and the superposition
theorem can accordingly be applied in these problems.
The above three common features of most NDT

problems are just the basis of zoom-in technique. This
technique can be used to confine the 3-D modeling to
a relatively small domain around the defect, out of
which the perturbation arising from the defect is
ignored. It has successfully been applied in 3-D
computations of remote field eddy current effects with
relatively few computer resources>’. In the previous
applications of zoom-in technique, the axisymmetric
potential solution was directly utilized as the boundary
condition of the 3-D modeling. In this paper, it will be
used as an equivalent perturbation source instead of
boundary condition, as shown in section 1.2, to
simplify numerical calculations further.

1.2 Difference field technique

If the magnetic vector potential A and electric
scalar potential ¢ are employed to analyze the typical
eddy current testing problems as shown in Fig.2 with
FEM, the governing equations describing the low
frequency eddy current phenomenon neglecting the
displacement current and surface charge are as'”’

v X;TV XA + viv cA+jwoc(A+ Vo) =Jg
V +jooc(A+ V) =0
(1)

where y is the material permeability, ¢ is the material
conductivity, and J is the current density imposed in
eddy current probe.
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Fig.2 Analyzed model (unit: mm)

Applying Galerkin weighted residual method to
discretize (1), the final simultaneous FEM equation
systems for the two cases with and without defects can
easily be obtained as

K0U°=K°{A}=P° (2)
and KdUd_Kd{j:d -
B sod}_P 3)

where K is the finite element (FE) coefficient matrix,
U is the unknown vector, P is the source vector, while
the superscript 0 and d denote the two cases with and
without defect, respectively.

It is not difficult to understand that the matrices
in (2) and (3) have the same structure and dimension
number when the FE meshes are the same in the two
cases with and without defects'®’. Furthermore, the
source vector P is a constant whether there is a defect
or not, provided that both exciting current and the FE
mesh keep unchanged.

Define the difference between the two coefficient
matrices in the two cases with and without defects as

AK =K' -K° (4)
It reflects the change of the FE coefficient matrix due
to defect, and is only relevant to those elements and
nodes within the defect regionm. The real dimension
of AK is therefore very small so that less computer
memory is needed to save it. Similarly, define
difference field between the two potential solutions in
the two cases as

Al A’
AU=U'-U’ = - 5
{sod} {soo} )
Subtracting (3) from (2), we have
| K° + AK |AU = - AKU° (6)

It is obvious that if AU can be worked out in terms of
(6), the potential solution vector with defect presence
U’ can be easily obtained by appending U°. The
magnetic vector potential vector in absence of defect,
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A", a sub-vector of U’ can rapidly be solved through
the corresponding axisymmetrical field computation.
While ¢’ can accordingly be taken as a zero vector if
the reference value of the electric scalar potential ¢ is
taken as zero in the 3-D analysis.

The comprehensive physical meaning of (6) is
that the perturbation potential AU results from the
- AKU®, which is essentially
derived from the medium change due to defect. The
fact that the source vector P disappears off (6) will be

perturbation source

remarkably helpful in simplifying the mesh generation
in the 3-D analysis since the detecting coil need no
longer be considered. This is a distinct advantage of
the difference field technique. Besides, the treatment
of the Dilichlet boundary condition of AA becomes
easier in the 3-D calculations, in which the difference
field AU is taken as the unknown vector. The reason
for this is that AA can simply be set as zero on its
Dilichlet boundary when applying the zoom-in

technique.
1.3 Iterative solution technique

According to section 1.2, (6) has to still be
repeatedly solved to model different defects or probe
moving so as to get whole NDT signals. Although the
3-D numerical calculation can be limited in a
relatively small surrounding domain by the zoom-in
technique, the linear algebraic equation system arising
from (6) is still enormous. Their multiple solutions will
require huge computer resources. To cope with this
problem, an iterative solution technique is presented to
solve (6).

Rewriting (6), we obtain

K'AU = -AK U’ - AK AU (7)
This equation can be solved by the common relaxation
iteration method. Note that the coefficient matrix on
the left of the equation, K°, never changes with
different defect cases, which is, in fact, corresponding
to the case in absence of defects. Once K° is
decomposed by some decomposition algorithm, the
decomposed coefficient matrices can be saved and be
utilized directly in the modeling of other defective
cases. Hence, large computer resources can be saved
in the modeling of whole NDT signals.

The iterative process is implemented by the
following weighted combination of the unknown
vectors at successive steps:

AU,,, =AU, +,3(AUL'_AU1'-1) (8)
where B, the relaxation factor, is generally taken in (0,
2). A zero vector can be taken as a reasonable initial
value of AU. The iterative process terminates once two

successive solutions agree within some prescribed tol-
erance.

Since the real defect is usually very fine, AK is
typically a slight perturbation to K°. Some example
calculations have shown that when the above iterative
algorithm is applied to the FEM equation system (6),
the iteration process is rapidly convergent. The multiple
solution of whole matrix equation system stemming
from the 3-D FEM modeling can eventually be avoided
by applying the iterative solution technique.

2 Application in a Benchmark Problem

A benchmark problem provided by Ref. [4 ] has
been studied to validate the proposed method. In the
problem a pancake coil is used to inspect cracks with
different depths in a square Inconel plate as shown in
Fig.2"*'. The inner and outer diameters of the coil are
1.2 mm and 3.2 mm, respectively. The coil height is
0.8 mm. The coil lift-off is 1.0 mm. The frequency of
the applied current is 300 kHz. The probe is very
small in size compared with the detected metal plate.
The objective of the modeling is to compute the
change in impedance as the coil moves along the
cracks and to compare the values with the correspond-
ing experimental results provided by Ref. [4].

By ignoring its edge effect on the probe, the
square metal plate being inspected can be
approximately considered as a conducting disc with
140 mm diameter. As a result, an axisymmetrical
analysis can easily be used to get the basic solution of
the potential in the case with no defect, A°. Fig.3
gives the flux distributions at wt = 0°and wt = 90°.
Because the axisymmetrical mesh is allowed to be
denser than the 3-D one, they generally do not
coincide with each other. The potential values on the
nodes of the 3-D mesh can be estimated through the

Fig.3 Flux distributions by axisymmetrical analysis.
(@) wt =0°; (b) wt =90°
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linear interpolation of A°.

Due to the symmetry of the problem, half of the
field is taken as the 3-D analysis domain. In the
calculations a 25 mm X 25 mm x 30 mm hexahedral
mesh was used, which was carefully generated to make
it accommodate to different depths of cracks. The
number of unknown variables is 45 136. The LDU
algorithm is used to decompose the coefficient matrix
formed in terms of (6), only the upper triangular part of
which needs to be saved due to the symmetry of the
coefficient matrix. In total about 55 M of computer
memory is occupied to solve the FE equation system.
The CPU times for the decomposition of the coefficient
matrix is about 19 min, and 8 s for one-step iteration of
(6) on a Pentium IV/1.0G PC. The above numbers
show that such a large NDT engineering problem can
be analyzed on a common PC by applying the
proposed combined method.

Fig.4 shows the eddy current distributions on the
surface of the metal plate for four coil positions: y =
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Fig.4 Eddy currents around defect on the surface of the
plate. (@) y =0.0 mm; (b) y =2.5 mm; (c) y =5.0 mm; (d) y =10 mm

0.0,2.5,5.0 and 10 mm. It can be seen that the eddy
current distributions are quite reasonable.

Fig.5 shows the impedance perturbations (Az)
for the cases with inner defects and outer defects,
respectively.
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Fig.5 Impedance perturbations for inner and outer

defects. (a) Inner defect; (b) Outer defect

The convergence of the iterative algorithm has
also been investigated numerically in the computation
of this benchmark problem. Tab.1 shows the iterative
numbers to different inner defect depths and
relaxation factors. The entries indicate that the
iteration of (6) has satisfied convergence, and [0.75,
1.25] is a proper region for taking 3.

3 Conclusion

A combined calculation method for the fast 3-D
FEM modeling of NDT probe signals has been
successfully presented. Based on the combined
method, the calculated region can be limited to a
relatively small domain around the defect, instead of
the whole field domain used in conventional methods.

Tab.1 Iteration numbers to different inner defect depths and relaxation factors
Inner defect/%

A 0 10 20 30 40 50 60 70 80 90 100
0.00 8 20 38 34 35 38 43 45 50 57 45
0.25 7 21 36 39 37 45 44 46 48 43 48
0.50 6 23 29 35 41 44 49 41 55 57 50
0.75 7 19 27 28 33 31 45 44 57 58 49
1.00 6 19 27 27 35 34 39 38 51 51 45
1.25 5 14 30 31 32 29 37 40 45 51 41
1.50 6 20 35 34 45 41 37 49 52 54 47
1.75 7 22 34 36 37 39 41 56 57 50 59
2.00 9 25 37 33 40 39 47 55 53 58 61
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The mesh generation can also be simplified in the 3-D
modeling. Furthermore, an iterative algorithm can be
used to obtain the solution of the matrix equation
system quickly. A great amount of computer resources
can thus be saved. The proposed method has been
applied to the derivation of the 3-D solution of a
benchmark problem with relatively few computer
resources. It has been shown that the proposed
combined method is highly effective and efficient in
electromagnetic NDT simulations, particularly for
problems having only small perturbations.
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