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Abstract: A reliability measure of network capacity under node capacities has been introduced, using the
concept of network reserve capacity, and compared with that based on link capacities. The measure
incorporating node capacities suggested should be considered in reliability analysis of urban street networks.
Note that the assumption that every origin-destination (OD) pair will have a uniform growth or decline in its

OD demand is preserved, whereas relaxing this limitation can yield pictures regarding the spatial distribution
of the demand pattern with non-uniform change, which can be especially useful in individual zone land-use

development plans.
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The capacity of a network is usually defined as
the maximum origin-destination demand that can be
accommodated into the network without violating the
specified capacity of each link; an alternative concept
is reserve network capacity'"?’. The network,
however, consists of elements including links and
nodes, which can be translated naturally into basic
segments and intersections, respectively. The emphasis
on link capacities
appropriate for a motorway network where the nodes
are not of direct significance for traffic. But in an
urban street network, most bottlenecks can be
observed at intersections rather than within the basic
segments. Thus it is necessary to study the network
capacity and its reliability under node capacity
constraints.

in network flow theory is

A structural proportionality of an a prior: origin-
destination (OD) flow distribution is just the same as
the reserve network capacity assumed, which is
articulated in terms of an OD matrix with the total sum
of all the proportional entries equal to one, because of
the immutability of the OD flow pattern in one time
period. The estimation of network capacity therefore
becomes a mathematical programming problem, in
which the maximum OD matrix multiplier is sought,
subject to the pass-flow rate at the node, resulting
from the network equilibrium, not exceeding the
corresponding node capacities.

With the increasing demand for better and more
reliable services, more attention has been concentrated
on the reliability analysis of a road network. The
reliability is generally defined as the probability that
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the system has the ability to perform its intended
function. In this paper, the network capacity reliability
under node capacity constraints is investigated, and
compared with that under link capacity constraints >’ .
To guarantee the quality of service provided by a road
transportation system, the node capacity should not be
underestimated in evaluating the performances of the
road network.

1 Node Capacity Constraints

Traffic demand at intersections varies throughout
the day and congestion frequently occurs during
morning or afternoon peak periods due to the number
of people commuting to or from work. The
phenomenon of traffic waiting at the link exits occurs
frequently. Thus the importance of a node capacity in
network reliability analysis should be emphasized.

The transportation network is denoted as G (N,
A), where N is a set of nodes and A is a set of links.
Consider a signalized intersection with three or more
approaching links. Let g’ be the green time given to
links approaching node n in the phase i, L, be the
total lost time of all phases per cycle, and C, be the
cycle length. Green time and lost time must satisfy the
following relationship:

i &n L,
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n

The term in the left hand side of the last equation
signifies the proportion of the available green time to
a signal cycle, which can be characterized as the
equalization of the composite of flow ratios for all the
critical flow movements. Let A’ denote the set of links
approaching node n during signal phase i, and ¢, be
the saturation flow of the link, called link capacity.
The access restriction of the signalized intersection
may be written as
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where x, is the flow on link a.

This node pass inequality signifies a kind of
access restriction of vehicular flow approaching a
node at each signal cycle. The node alternatively
allocates green time among conflicting traffic
movements seeking use of the same physical space.
The inspection is valid not only in each signal cycle
but equally in an observed time period for studying
traffic phenomena. A similar restriction inequality on
node capacity also exits in unsignalized intersections,
but the alternation of access right is no longer
prearranged; rather it is adaptive: the priority is
generally allowed for the early arrival. For a similar
discussion about node capacity refer to Refs. [4, 5 ].

2 Network Capacity and Reliability

2.1 Network capacity model

Network reserve capacity is defined as the largest
multiplier applied to a base origin-destination demand
matrix that can be allocated to a transportation
network in a user-optimal way without violating the
node capacities. It can be mathematically stated as
follows:

max i
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where x, (uq) is the equilibrium flow on arc a e A; u
is the OD demand multiplier; ¢ is the base OD demand
vector; ug is the scaled demand, which is the base OD
demands g scaled by u. A network capacity problem
under link capacity constraints > can be formulated if
the node capacity constraints are substituted with the
following inequality:

%, (ug) <c, Ya

Route choice behaviors are explicitly considered
under  equilibrium  constraints, which  bound
equilibrium flows below their corresponding
capacities. The pattern of equilibrium link flow is
obtained by solving the following standard user-
optimal traffic assignment problem:

min zj”tu(u, ¢,) du
a 0

subject to Y [ = ugq, Y w

re Rw
x, = > D fre Va
fr=0 Vr,w
where R" is the set of routes between OD pair, w € W,

t,(x,, c,) is the travel time on link, a € 4; ¢, is the
demand between OD pair, w € W, W is the set of OD
pairs in the network; /" is the traffic value on route,
reR"; 8% is 1 if link @ is included in route r,
otherwise it is 0.

The problem of computing multiplier u, is treated
as a bi-level programming problem. At the upper level
link use proportions or link flows are used as the
inputs, which are the output of standard user
equilibrium assignments enforced at the lower level. In
consequence, route choice behavior and congestion
effects are explicitly considered by the lower-level
problem while the upper level problem determines the
maximum OD matrix multiplier subject to the capacity
constraints. As the scaled demand approaches the
network capacity, equilibrium constraints will have a
substantial effect on the distribution of traffic flow
and on the network reserve capacity. Since the upper
level problem has only one decision variable, it can be
handled as a parameter in the lower level problem.
And hence, the overall problem can be solved as a
singular optimization, in which the multiplier u is
properly adjusted until at least one of the equilibrium
element flows is approaching its upper bound, node or
link capacity. Then, the multiplier u, being greater
than 1, shows that the network has reserve capacity
amounting to 100 (u — 1) percent of the base OD
matrix, and the multiplier u, the value of which is less
than 1, shows that the network is overloaded by 100 x
(1 —u) percent of the base OD matrix.

2.2 Uncertain source and network capacity reliability

This paper proposes an analytical framework to
evaluate the influence of variations in link capacity on
the network capacity reliability. In reality, road
network capacity is not deterministic, but subject to
variations due to traffic accidents, weather conditions,
roadside parking and so on. Clearly, the resultant
network capacity depends on the link capacity vector
c. Letc =¢, — ec,, where ¢, is a vector of normal link
capacities, and g is a parameter to determine the
degree of deterioration of link capacity, and ranging
from 0 (no degradation) to 1 (complete degradation).
A probability distribution p (¢ ) of perturbation
occurrence is supposed to be available, which might
be estimated from existing sources of data. As defined
in section 1, the node capacity is associated with the
capacities of its approaching links and hence is
uncertain.

The methodology presented for evaluating
network capacity addresses the capacity of the
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intersection as a whole, while the reliability analysis
of network capacity is specifically on the basis of the
capacity of the full intersection. Network capacity
reliability is calculated as a probability that the
maximum OD flow is greater than or equal to a
required demand level when the capacity of links is
subject to random variation. With the concept of
reserve capacity, it can be given as

R(p', &) =P, p'su

The probability predicts how reliably the network
with degraded links can accommodate a given demand
level u”. The system is 100% reliable when the
demand is zero, and 0% reliable when the demand is
infinite. The employment of reserve capacity has
provided a feasible approach to estimating network
capacity reliability incorporating route choice
behavior.

Given the fact that the link capacity is a random
variable following a certain probability distribution,
reliability analysis focuses on knowing the resulting
probabilistic fluctuations or reliabilities of maximum
network flow and travel time between the specified
origin and destination pairs.

3 Numerical Simulation and A nalysis

The numerical examples of network capacity
reliability are presented here with the use of the
Monte Carlo method. The test network and base
demand as well as link performances are the same as
those'®’ shown in Fig. 1. There are 8 nodes and 24
links. The link travel time is estimated by the standard
BPR function.

Fig.1 Test network

In the absence of link degradation data, a
uniform distribution with an upper bound is assumed
to generate the random capacities of all links. When
the capacity of every link is fixed at the upper bound
equal to its capacity, the largest multiplier is one,
which means that the current network capacity is just
enough to accommodate the base demand,
corresponding to the non-degraded state. All the
measures of capacity reliability are calculated from a

Monte Carlo simulation of 5 000 samples.

Fig.2 shows the relationship between the network
capacity reliability R (u’, &) under link capacity
constraints and indicates eleven series of R(u’, &)-
curves with different values of the parameter . The R
( ,u,o, g )-curve in the extreme left hand side
represents the capacity reliability in the case of ¢ =0.
It shows that in the normal state, the network can
accommodate the base demand ¢, and is 100%
reliable for any given demand level i’ In contrast, the
curve in the extreme right hand side represents the
capacity reliability in the case of £ =1.0. It shows the
lowest capacity of the network in the worst case of
degraded link capacities. Network capacity reliability
under either link capacity or node capacity declines
when the variation width of the link capacity grows.
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Fig.2 Capacity reliability under link capacity constraints

Fig. 3 shows the relationship between the
network capacity reliability R (u’, &) under node
capacity constraints. As with Fig.2, the extreme left is
the case of normal link capacities and the extreme
right is the worst case of link capacity degradation.
The capacity reliability under node constraints has
the same tendency as that under link constraints and
shows decline when link capacities vary greatly.
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Fig.3 Capacity reliability under node capacity constraints

Under the same variation condition, however, the
network capacity under link constraints is roughly
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double the one under node constraints. In other words,
the assessment of the latter devalues the reliability of
network capacity. There are no accidents because the
shortage of element throughput usually occurs at the
intersections rather than in the road segments over the
street network. Therefore the reliability should also be
considered under node constraints when network
performance is studied.

Fig. 4 shows comparisons in network capacity
reliability between the cases of link and node capacity
constraints in three kinds of variation width. Under
node capacity constraints, the network is 100%
reliable in Fig.4 (b) for lower demand levels up to
25% of the base demand, while under link capacity
constraints the reliability of 100% will last until to
50% of the base demand. As the demand level

increases, both measures of capacity reliability decline
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Fig.4 Comparisons of reliability measures under different
variation widths. (a) ¢ = 0. 1 (Variation width = 0. 1 x link
capacity); (b) ¢ =0. 6 (Variation width =0. 6 X link capacity); (c) &
=1.0 (Variation width =1. 0 x link capacity)

and finally fail. It further verifies that reliability
measures are rather different from vary visual points,
and that the measure in node capacity constraints is
capacity
constraints. Figs.4(a) and (c) describe the two extreme

conservative relative to that in link
situations of variation width being 0.1 or 1.0 times
link capacity. It exhibits that the difference of two
assessments is the largest when the variation is small,
and that the two reliability curves are approximately
the same; in other words, the differences of the two
measures tend towards equality as the amplitude of
link capacity variation grows. This comparison
manifests that the network capacity reliability under
node capacity might not be dispensable in network
reliability analysis, especially in traffic demand subject
to daily fluctuations.

4 Conclusion

A reliability measure of network capacity under
node capacities using the concept of network reserve
capacity has been introduced, and compared with that
based on link capacities. The measure suggested which
incorporates node capacities should be considered in
reliability analysis on road network. Note that the
assumption that every OD pair will have a uniform
growth or decline in its OD demand is preserved,
whereas relaxing this limitation can yield pictures re-
garding the spatial distribution of the demand pattern
with non-uniform change, which can be especially
useful in individual zone land-use development plans.
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