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Generalized super-Virsoro algebras and their Verma modules

Zhang Xiufu Zhou Jianhua

(Department of Mathematics, Southeast University, Nanjing 210096, China)

Abstract: For any additive subgroup M of a field F and «a e F such that 2a € M, there are two classes of

generalized super-Virasoro algebras denoted by SVir [ M, « ] and ST\?E[M , a] by Su and Zhao. The latter is
in fact a trivial extension of the former. In this paper, based on the discussion on isomorphisms, the Verma
modules of Svir [ M, o] are studied, and the irreducibility of these modules are obtained.
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Virasoro algebra and the related algebraic structures play an important role in many areas of mathematics and
mathematical physics, and theories about their structures and representations have been well developed. The high
ranking Virasoro algebras and high ranking super-Virasoro algebras were studied in Refs. [ 1, 2 ], respectively.
The generalized Virasoro algebras and generalized super-Virasoro algebras were studied in Ref.[3 ]. Important
modules, such as Harish-Chandra modules, modules of intermediate series, indecomposable modules, highest
weight modules and Verma modules of some of these algebras are also extensively studied ™"’ In particular, the
automorphisms of generalized Virasoro algebra were determined in Ref. [ 3 ]. The irreducibility of their Verma
modules was determined in Ref. [4].

The main purpose of this paper is to study the Verma modules of generalized super-Virasoro algebras, the
algebras introduced by Su and Zhao"*’. In section 1, some presentations of these algebras are given. Similar to
Ref. [3], we determine their automorphisms and give sufficient and necessary conditions under which two such
algebras are isomorphic. In section 2, we define the Verma modules of generalized super-Virasoro algebras and
determine the irreducibility of these modules.

1 Generalized Super-Virasoro Algebras
Let M be an additive subgroup of field F, a € F such that 2o € M. By Ref. [ 3], there are two classes of

generalized super-Virasoro algebras with respect to M, «, which are denoted by SVir[ M, «] and S/\\/i?[M ,al,
xeM | U{G, lvea+M|Ujic}.SVir[M, a] is a Lie superalgebra with

respectively. They both have basis { L

x

commutative relationships:

3
(Lo L] = (y =) Lo, 48,0, 0" 5 e
(L, cl=lc, 6,]=0 (1)
(L. 61=(v-5])C...
1 1
[Gz:l ) sz] :2Lu1+1:2 _81>1+n2,()?<1}12 _Z>C (2)

S/\\fi?[M , a] is a Lie superalgebra with the commutative relationships (1) and
(G, 6,1=8,.., (3)

vy 2

Clearly, S/VE[M , o] is a trivial extension of Vir[ M ] modulo the center Fe, so we will mainly discuss
SVir[ M, «]. All results in this section can be obtained in the ways similar to those used in Ref. [3]. So, the
proofs of the results in this section are all omitted.

For the automorphism group of SVir[ M, « ], we have the following theorem.

Theorem 1 (D For any y e Hom(/, F*), the linear transformation @, over SVir[ M, o] determined by
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e, (c)=c, o (E,)=x(x)E, «xel
is an automorphism, where £, =L ifxeM,E =G, if xeM'.

@ For any a e {ae F |aM =M}, the linear transformation ¢’, over SVir[ M, «] determined by

c—ac
_1
- a—a
Lx_>a’ lLux - dx, 0 24
G, —pG.,

where p® =a ' is an automorphism of SVir[ M, a].

@ Aut (SVir[M, a]) = Prom(it, £y X @s1) -

Remark 1 The theorem generalized the results of theorem 2. 3 in Ref. [3]. Note that the form of the
automorphisms ¢’, in ) is not the same as those in Ref. [3]. In fact, verification shows that ¢, in Ref. [3 ]
should be determined by the following correspondences:

c—ac
a-a
x, 0 24

By Ref. [3], if M, N are two additive subgroups of F, then the generalized Virasoro algebras Vir[ M ] and
Vir[ N] are isomorphic if and only if there exists @ € F* such that aM = N. In the case of generalized super-
Virasoro algebras, the similar result holds. In fact, we have the following theorem.

Theorem 2 Let M, N be two additive subgroups of F. For o, 8 € F such that 2a e M, 2B e N, let M' =M +
a, N=N+B,I=MUM', J]=NU N'. Then, SVir[ M, «] and SVir[ N, 8] are isomorphic if and only if there
exists a € F* such that M =N and af = J.

L—a 'L, -6

a

Corollary 1 ForanyaeM™ .=M\{0} , SVir[M, %] has a subalgebra SVir[aZ, >

], which is isomorphic

to SVir[ Z, ;—] and the mapping 6: SVir [ Z, ;*]HSVir[aZ, 2]

c—ac
-1
-1 a—a
Li—a 'L, - 5;, 0 oy
G% +j_’pG'2i +ja

with p> =a ™", is an isomorphism between SVir [Z, %] and SVir [aZ, %]

Corollary 2 Leta e F with o ¢ M and 2o e M, B e M , then SVir[ M, o] is isomorphic to the subalgebra of
SVir[ M, B] generated by {L,, lueM} U{G
SVir[ M, o] such that

v e M} and there exists an injective homomorphism 6§ of

20 +2a

c—2¢
1 1
LuH?LZH - 5u, OEC

Gv + a*)pGZW +2a

for some p e F and p’ =%.

In the sequel, we will mainly consider the case of a« ¢ M , 2 € M. The results in the case of o € M can be
then obtained according to corollary 2.

2 Verma Modules and Their Irriducibility

Clearly, / = M U M’ is an additive subgroup of F. Let “ > " be a total order on / compatible with the
addition, i.e., a +c>b +cea>b. Let I, ={iel|i>0},1_= -1, then =1, U {0} UI_. Then, SVir[ M, «]
has triangular decomposition:

SVir[ M, o] =SVir_ @D SVir,®SVir,
when « ¢ M, it has triangular decomposition:
SVir[ M, ] = SVir_ ®SVir,®SVir, ©FG,
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when o € M, where SVir_=®,_, FE,, SVir, = FL,®Fc, SVir, =P
U(SVir[ M, «]) = U(SVir _)U(SVir,)U(SVir, ) agM
U(SVir[ M, «]) = U(SVir _)U(SViry)U( FG,) U(SVir, ) aeM
For convenience, denote by (E,),_, the basis of the base vector space of SVir[ M, «] such that
E=L(ieM), E, =G (ieM")
Let £=1{(i,, iy, =+, i,) | VreZ, Uf0}, i <i,<--<i,and i, <i,,, ifi, i,,, € M'}. So, by PBW’s theorem,
the universal enveloping algebra of SVir [ M, «] has basis:
%Eil'“Ei,’ Eil"' Ei,vc ‘ (i, - 0,) EE}

Let ¢, heF, V, a one-dimensional vector space over F with basis v,. Define the actions of L, and ¢ on V, by

FE,. So,

iel,

Ly. v, =hv,, c. v, =¢év,. Then V, becomes one-dimensional SVir,-module. Define the action of b = SVir, + SVir,
over V, by SVir, . v, =0, then V, can be viewed as a b-module.

Definition 1 The induced module

Ind;""" Y, = U(SVir[ M, a]) ®,, V,

over SVir[ M, «] is called a Verma module of SVir[ M, «], and is denoted by M (¢, h).

It is easy to see that ¢ acts on M(¢, h) as scalar ¢. We denote the weight space {ve M(¢, h) | Ly.v=Av,
c.v=¢v} with weight A of M(¢, h) by V,.

Lemmal If o € M, then G,. v, =0.

Proof If « e M, 1=M, we define the Z,-graded of M(¢, h) by M(¢, h) =My @My, where M; is the space
spanned by {E_, -+ E_, v, | Vr=0, Vj, eM,, (i, =, i)e E, and the number of E_; of form G is

evenf, My is the space spanned by {E _, --- E v, | Vr=0, Vj,ieM,, (i, i) e E, and the number of
E_; of form G _, is odd|. Denote MG =M5 NV, . M} =M; NV,. Since Ly. (Gy.v,) =Gy. (Ly. v,) =h(Gy. v,), we
have G,. v, e M’;. Since V, = M’s ®M’; is a one-dimensional space and M’ = F,, so, Gy.v, e M =1{0}.

For any x e/, let M (¢, h) be the submodule of M(¢, h) over SVir[2xZ, x ] generated by the highest
fixed weight generator of M(¢, h). By corollary 1, we have the following corollary.

Corollary 3 If we define the action of SVir[Z, %] on M (¢, h) by

c.v, =2xc.v,, G1 ..v, =pG,. v,

2"
2% — (2x) ' ]
h

L. Uh:[(zx)_thi_ai,U 24

M_(é, h) becomes a SVir[Z, %]—module and as a SVir[Z L]-module, M, (¢, h) is isomorphic to M (2xc’,

* 2
-1
(2x) 'h —Mé ) , where p* = (2x) ',
24
Remark 2 From Ref. [4 ], it is known that for any total order *

forany xel, , #{yel|0<y<x| ==

¢ ”

> of I, either

or
Jael, such that #{yel |0<y<a| =)
The order “>" is called dense in the first case, discrete in the second case.
Theorem 3  If the order “>" of [ is dense, then Verma module M(¢, h) of SVir[ M, o] is irreducible if
and only if (¢, h) (0, 0).
Proof Let v, be a fixed highest weight generator in M (¢, k) of weight h. For each m e N, we set

Vm = 2 FE*il“. E*i,vh
0sr<m
(iy, ip, =, i,) €E
i1, i, v, ipely

It can be easily proved that E,V, CV, for any iel,.

We prove the theorem in two cases.
Casel oagM.
Let u, #0 be any given weight vector in M(¢, h), we prove that
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E_v,eU(SVit[M, a])u, forany x e/,
Claim 1 There exists a weight vector u € U(SVir[ M, a])u, with weight A such that, for some re V,
u=L_, L - L_, v,(modV,_,)

e
where &, e M, (j=1, -, r)and ( -¢,, =+, —&,) ck.
In fact, it is clear that u, € V, for some r e N. If r =0, we have u, € Fv,, let u =v,(hence A =h), then claim 1

holds. If r =1, without loss of generality, we suppose that the coefficient is 1 and u, =L _, v, or u, = G _,v,. For

the first case, let u = u,(hence A =h — &), then claim 1 holds. For the second case, let u = G G_,v, =2L

e1-ey —¢ Uhs

)

where £, e M, and ¢, >&,, (hence A =h — &,), then claim 1 holds. If r > 1, we rewrite
w= ¥ e E g (modV, )

(iy, =y i) eE
i, ~,le[

where i = (iy, =-, i,). Let I={ (i, --, i,) | a,#0} . By the assumption, /(7). For any i, i’ € I, define

i>i'e Jinteger s, 1<s<r, such that i > and i, =i for ¢ >s

”

Letj=(j,, -+, j,) e be the maximal element of /. Because “ >" is a dense order, we can always find some &, e

M such that £, <j, and | Jo e <x<jt Nii , ieI=(). Then,
Uy = L Uy = 2 ai_(l)L—le—ifl (—lz) lvh( mod V 1) (4)
(&1, i1, =, ip_1) €E
ereM,
iy, e, el

where 'V = { (g, i{", =, ii!}) | a{" #0} #(J. In this step, only those satisfying i, =j, in {¢,E_, - E_, |a
15 1 -l p =] i

-1 —i,
#0} produce the terms of the sum in (4), the rests are acted to V, _,
We denotej( =(&,]J i ,]f”l) the maximal element of /" Let &, €M, such that &,<eg, and {x e/ |

Joo — & <a<j,_ t N i§l> |l$s$r—l, é(l) =(&, Lfl)a Tt (” 1) el = =(J). Then,

— e @) @)
Uy = Ly U = 2 ;L L EZ5 - ES v (mod V) (5)
(22, &1, i1, s ipn) € B
&y, &1, I, 7y bppely
Similarly, in this step, only those satisfying i,_, =j,_, in {a,'"L_, E_ o)==+ E_, ) | a,"" #0| produce the

terms of the sum in (5), the rest are acted to V, _,
Recursively, we can repeat this process step by step and obtain the following equation:
u=u=al_, -+ L_, v,(modV, )
for some nonzero a € F. Without loss of generality, we can set a = 1. So, the claim holds.
Claim 2 There exists some ¢ e/, such that E__ v, € U(SVir[ M, a])u,. Furthermore £ _ v, € U(SVir[ M,
a])u, for all of x e B( &), where B(&) is the semigroup generated by the set {yel, |y<e!.
In fact, according to claim 1, there exists some weight vector u e U(SVir[ M, a])u, such that
w=L,L,v,+ Y bE, E,v

—&] i
0<k<r
(igy =y ip) €E

where i el,, &, e M, for any s and &, <---<g,. Denote I, = { (i, ===, i,) [ b;#0},i(0) =min{e,, i, |i: =

ro

(iy, =+, i) ely}.Let e eI, such that £<i(0). Considering the weight of u is A, we have
E, ,_u=f(h-A-8g)E_v, + Z bg(h-A-g)E_v, =

I<k<r
(iy, =, ip) ek
i, oy ipel,

(fth-A-¢&) + 2 bi_gl;(h -A-¢g))E_v, € UCSViIr[M, a])u,
where f(x), g(x) are polynomials and deg f(x) =r, degg; (x) <r - 1. So we can find some & such that
fth-A-¢g) + 2 bég,._(h -A-¢) #0.Thus E__v, e U(SVir[ M, a])u,. The first part of claim 2 is proved.
Let &' €1, such that &' <g, then E_, v, e FE, E v, CU(SVitlM, al)u,, so E_ ., v, e F(E_E_,uv,
-E__E_v,) CU(SVir[M, a])u,. Similarly, we can deduce that E_ v, e U(SVir[ M, o] )u, for any x e B(&).
The second part of claim 2 is also proved.
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For & mentioned in claim 2 and for any n e N, we have that O If ne € M, , then E _E_ v, =2ne Ly, +

-ne

3 3 3
uc‘vh:(Zn{;h +u )v,, @ If neeM',, then G,, G_ngvhz[Zh——((n e)’ - ) ]v,l It is easy to

12 12
3 3
see that, if (¢, h) # (0, 0), there always exists some n € N such that 2nxh + %c’ #0 and 2h -
(f(ne) )C#O so v, € U(SVir[ M, a])u,. Therefore, M(¢, h) is irreducible.
Case2 oeM.

Let u, #0 be any weight vector.
Claim 1 There exists a weight vector u e U(SVir)u, with weight A such that for some r e N

w= (L, L, - L,v,+ >bE E, - E_ v)(modV, ) (6)
where the summands in the second summand of (6) are those of which at least one of | | j=1, -, r} has
the form of G _,

In fact, u, € V, for some r e N. Claim 1 holds clearly for r =0 and r =1. For r > 1, we set

Uy = Z ak_ - E_v,(modV, )

(iyy vy i) =

iy, el

By a similar method as used in claim 1 and by picking E; _, and E; _, properly as in (4) and (5), we have
uh = E;_u = ( > “£1>L1,E451>"' E_q) + Zbgl)c—mE’—iW"' E[L.@) (mod V._,)
(e1s ity = i) €F i
ereM,
uhH = E/r-rEzu/l = ( 2 Z)L*EZL*HE*'(Z)“. E g +
(&, &1, if2), -, if2)) ek

ey, e1eM,

> b E BB e B e ), (mod V) (7)

i l
where the summands in the second summand of (7) are those of which at least one of £ _, , E_ has form of G;.
We can prove by induction that
w =u, = (L, L, + Y bE - E, Jv(modV, ) (8)
Claim 2 There exists some ¢ e I, such that
v, +dG _,v, e U(SVir[ M, o] )u,
In fact, noting that the weight of u’ is A, we can choose £ € M, such that

h-A-ecel, (9)
Let L, _, _, act on the two sides of (8), we have
L,_, =f(h-A-¢g)L_v, + Zgi_(h -A-¢e)G_p,

where f(h - A —5) and g,(h-A-¢g) eF.
Since deg f(x) =r>1, deggé(x) <r, there exists £ e/, such that
Sh-Xx-¢g)#0 (10)
g(h-\A-¢)
fh-x-e) 0
sufficiency of the theorem holds. In the following, we suppose that d #0.

3
g —e, & _ -
o +d( &= )Govh —( —2¢h +£ D )v,l

Thus, L_,v, + 2 v, = L_v, +dG_w, e U( SVir) u,. Therefore, if d =0, by case 1, the

By lemma 1, we have L_L__v, +dL,G_,v, = —2¢eLyv, +

~€40 and (9) and (10)

3
If (h, ¢)#(0, 0),since “>" is a dense order, there exists & e /, such that —2¢h +£ B

hold. So v, € U( SVir) u,.
By case 1 and case 2, the sufficiency of theorem 3 is proved.
The necessity holds clearly. Otherwise, we can easily find a proper submodule of M (¢, h), for example,

M'(0,0) = Z FE_ - E_ v, .
cyapely
k>0
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This completes the proof of theorem 3.

In a way similar to the ones used in Ref. [4] and in the proof of the above theorem, we can prove the
following theorems. We only give the results, the details of the proofs are all omitted.

Theorem 4 If “>" is a dense order, then

M'(0,0) = Y FE, - E_uv,
e

is an irreducible submodule of M (0, 0) if and only if for any x, y e, , there always exists a positive integer n
such that nx>vy.

Theorem 5 With respect to a discrete order “ > ", the Verma module M(¢, h) is an irreducible SVir[ M,

o ]-module if and only if M_ (¢, k) is an irreducible SVir[ 2aZ, a]-module.
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