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Fixed points on complete metric spaces

Zhu Shunrong

(Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: Two new fixed point theorems on two complete metric spaces are proved by using the concept of w-
distance. One of the results is: let (X, d) and (Y, p) be two complete metric spaces, let p, be a w-distance
on X and p, be a w-distance on Y. If T is a continuous mapping of X into ¥ and S is a mapping of Y into X,
satisfying the inequalities: p, (STx, STx') <ecmax{p,(x, '), p, (x, STx), p, (x', STx'), p, (%, STx') /2,
p2(Tx, Tx') | and p, (TSy, TSy') <emaxip,(y, y'), po(y, TSy), pr(y", TSy"), po(y, TSy") /2, p; (Sy,
Sy") | forall x, " in X and y, y" in ¥, where 0 <c < 1. We have proved that ST has a unique fixed point z in
X and TS has a unique fixed point w in Y. The two theorems have improved the fixed point theorems of Fisher
and Namdeo, et al.
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1 Preliminaries

Definition 1" (D A real-valued function /f defined on a metric space X is said to be lower semicontinuous
at a point ¢ in X if either liminf f(x) = + = or lim inf f(x) =f(t); @ A real-valued function f defined on a

metric space X is said to be upper semicontinuous at a point ¢ in X if either 132? sup f(x) = —o0 or lxlgl sup f(x)
<=f(1).

Definition 2>’ Let X be a metric space with a metric d. Then a function p; X x X—[0, « ) is called a w-
distance on X if the following are satisfied: D p(«x, z) <p(x, y) +p(y, z) forany x, y, ze X; @ for any x e
X, p(x, +): X—>[0, o) is lower semicontinuous; 3 For any & >0, there exists § >0 such that p(z, x) <8
and p(z, y) <& imply d(x, y) <e.

Example 1>’ Let X be a metric space with a metric d. Then p =d 1s a w-distance on X.

Example 27 Let X be a metric space and let T be a continuous mapping from X into itself. Then a
function p; X x X—[0, « ) defined by p(«x, y) =max{d(Tx, y), d(Tx, Ty)| for every x, y e X is a w-
distance on X.

Example 3" Let X =R be a metric space with the usual metric. Then a function p; X x X—[0, o )

defined by p(x,y) =max{ %x -y ,%Ix -yl } for every x,y e X is a w-distance on X.

Lemma 1> Let X be a metric space with a metric d and let p be a w-distance on X. Let {x,| and {y,| be
two sequences in X, let {a,} and {B,} be two sequences in [0, o ) converging to 0, and let x, y, z e X. Then the
following hold:

@ If p(x,, y) <a, and p(x,, z) <B, for any n e N, then y =z. In particular, if p(x, ¥) =0 and p(«x, z) =
0, then y ==z.

@ If p(x,, v,) <a, and p(x,, z) <B, for any ne N, then{y, | converges to z.

@ If p(x,, x,) <a,, for any n, m e N with m >n, then {x,} is a Cauchy sequence.

@ If p(y, x,) <a, for any ne N, then {x, | is a Cauchy sequence.
Fisher, et al. proved fixed theorems in Refs.[3 —5 ]. The following related fixed point theorem was proved in
Ref.[3].
Theorem 1 Let (X, d) and (Y, p) be two complete metric spaces. If T is a continuous mapping of X into
Y and S is a mapping of Y into X satisfying the inequalities:
d(STx, STx') <cmax{d(x, x'), d(x, STx), d(x", STx"), p(Tx, Tx') |

p(TSy, TSy") <emaxip(y, y'), p(y, TSy), p(y", TSy"), d(Sy, Sy") |
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for all x, " in X and y, y'in Y, where 0 <c¢ < 1. Then ST has a unique fixed point z in X and 7S has a unique
fixed point w in Y.Further, 7z =w and Sw =z.
The following theorem is a generalization of theorem 1.

2 Main Results

Theorem 2 Let (X, d) and (Y, p) be two complete metric spaces. Let p, be a w-distance on X, p, be a w-

distance on Y. If T is a continuous mapping of X into Y and S is a mapping of Y into X, satisfying the inequalities:
p, (STx, STx'") <cmax{p, (x, x'), p,(x, STx), p,(«x’, STx"), p,(x, STx') /2, p,(Tx, Tx')} (1)
p2(TSy, TSy") <emax|{p,(y, '), p(y, TSy), p,(y", TSy'), po(y, TSy')/2, pi(Sy, Sy') i (2)
for all x, " in X and ¥, y' in ¥, where 0 <c¢ <1. Then
(D For each x e X, { (ST)"x =x,| is a Cauchy sequence, { T(ST)" 'x =y, | is a Cauchy sequence.
2 Assume that inf{p, (x, u) +p,(x, STx) : x e X} >0 for every u e X with u STu. Then ST has a unique
fixed point z in X.
Assume that inf{p, (y, v) +p,(y, TSy):ye Y| >0 for every v e Y with v TSv. Then TS has a unique fixed
point w in Y. Further, 7z =w and Sw =z.
Proof (D Let x be an arbitrary point in X. We define the sequences {x,} in X and {y,} in ¥ by
(ST)'w=x,, T(ST)" 'x =y,
for every n e N. By (1), we obtain
P, %,00) =p (STx,_,, STx,) <
emaxip, (2, ., 2,), pr(x, 1, %,), pi(a,, %,,0), pi(x, 1, 2,072, pr(y,, Vo) | <
emax {p, (x,_y, ,), pr(%,, 2,51, [pi(x,0, 0,) +pi(x,, 2,00 172, pa (v, v | =

Cmax{pl(xn—]’ %,) s P (¥, yn+l>% (3)
Similarly, by (2), we obtain
P2 (Vs Yuur) Semaxip, (y, ., ¥,), pi(%, 1, %,) | (4)
Let M =max{p,(x, x,), p,(y,, ¥,) |, it easily follows by induction that
Pi(x,, %) <c'max{p,(x, x,), p,(y,, y2) | =c'M (5)
Py ¥un) <€ Tmaxip, (x, 1), po (i, 32) =M (6)

forn=1, 2, ---. If n <m, then (5) and (6) imply that

pl(xn’ xm) spl('%u, xn+l) +p1(xn+l7 xu+2> +oo +p1(xm,1, ‘xm) =

(Cn +Cn+l R +cm71>M$Cn<1 —C) 71M (7)
pZ(yn’ ynz)ng(yn’ yn+1) +p2(yu+1? yn+2)+.“+p2<ymfl’ ym)s
(cnfl +cn 4o +cm72)M$cnfl(1 _C) 71M (8)

forn=1,2, . Since 0<c <1, by lemma 1, {x,} is a Cauchy sequence with a limit z in X and {y,} is a Cauchy
sequence with a limit w in Y. This completes the proof of (.
) From (7) and definition 1, we have
P (%, 2) < lim inf p, (v, x,) <¢"(1-¢) "M (9)
Assume z7 STz, then by hypotheses (5) and (9), we have
0 <infi{p,(x, z) +p,(x, STx) : x e X| <inf{p,(x,, z) +p,(x,, STx,) : neN/| =
inf{p,(x,, z) +p,(x,, x,,,): neN| <inf{c"(1 —¢) '"M+c"M: neN} =
inf{ (2-¢)c"(1 -¢) 'M: neN} =0
This is a contradiction. Therefore we have STz =z.
From (8) and definition 1, we have
pa(y,, w) <lim inf p, (y, , y,) <" 7'(1-c) 7'M (10)
Assume w # TSw, then by hypotheses (6) and (10), we have
0 <infip,(y, w) +p,(y, TSy): yeY{ <infip,(y,, w) +p,(y,, TSy,): neN| =
inf{p,(y,, w) +p(¥,, ¥,.,): neN| <inf{ (2 -¢)¢" ' (1 =¢) '"M: neN}| =0
This is a contradiction. Therefore we have T'Sw = w.
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Since T is continuous, we have
w=limy, =limTx, , =Tz

Further Sw = STz =z.
To prove the uniqueness of the fixed point, suppose that ST has a second fixed point z" and 7S has a second

fixed point w’. Applying inequality (1), we have

pi(z, z) =p,(STz, STz) <emaxip,(z, z), p,(z, STz), p,(z, STz), p,(z, 2)/2, p,(Tz, Tz) | =

emaxi{p,(z, z), P,(Tz, Tz) |

and so either

pi(z,2) =0o0rp (z, 2) <cp,(Tz, Tz) (11)
Applying inequality (2), we have

p,(Tz, Tz) =p,(TSTz, TSTz) <cmax{p,(Tz, Tz), p,(Tz, TSTz), p,(Tz, TSTz)

p,(Tz, TSTz) /2, p,(STz, STz) } =cmax{p,(Tz, Tz), p,(z, z)}

and so either

p,(Tz, Tz) =0 or p,( Tz, Tz) <cp,(z, z) (12)
By (11) and (12), it follows that

p,(z,2) =0, p,(Tz, Tz) =0 (13)
Similarly, applying inequality (1) and (2), we get

p, (2", 2") =0, p,(Tz", Tz") =0 (14)

Applying (1), (13) and (14), we get
p.(z,2") =p, (STz, STZ') <cmax{p, (z, z'), p,(z, STz), p, (2", STz') , p,(z, 2')/2, p,(Tz, Tz') } =
emax{p,(z, z'), p,(Tz, Tz') |
and so either
p,(z,2)=0o0rp(z,2)<cp,(Tz, Tz") (15)
Applying (2), (13) and (14), we get
p,(Tz, Tz") =p,(TSTz, TSTZ') <cmax{p,( Tz, Tz'), p,(Tz, TSTz), p,(Tz', TSTZ'),
p,(Tz, TSTz')/2, p,(STz, STz') } =cmax{p,(Tz, Tz'), p,(z, z') |
and so either

po(Tz, Tz') =0 or p,(Tz, Tz') <cp (2, 2') (16)
By (15) and (16), it follows that
pi(z,2") =0, p,(Tz, Tz") =0 (17)

Thus we obtain p, (z, z) =p,(z, z') =0.

By lemma 1 we have z =z', proving that z is the unique fixed point of ST7.

Now TSw' =w' implies that STSw’ = Sw' and so Sw' =z Thus w =Tz = TSw’ =w’, which proves that w is the
unique fixed point of 7S. This completes the proof of the theorem.

Example 4 Let X = R =Y be complete metric spaces with the usual metric d(x,y) = |x — y|. Define
mappings S,T:X—X by

Sx=-1for —o <x<0, Sx=xforO<x< +o,, Tx=xfor — <x<0, Tx =0 forO<x < +

respectively.

Letp,: X xX—[0, + o ) be a mapping such that p, (x,y) =max{d(Tx,y),d(Tx,Ty) | for every x,y e X.

Let p,: YxY—[0, + ) be a mapping such that p, (x,y) =max{ %x -y ,%Ix -yl } for every x,y e X.
From examples 2 and 3, we know p, is a w-distance on X, p, is a w-distance on Y. Then, clearly p, ,p,, Sand T
satisfy all conditions in theorem 2, ST has a unique fixed point —1 in X and 7S has a unique fixed point —1 in
Y.
Corollary 1 Let (X, d) be a complete metric space and p be a w-distance on X. Let T be a continuous

mapping of X into itself. Suppose that there exists ¢ € [0, 1) such that

p(T’x, T°x") <emax{p(x, x'), p(x, T°x), p(x', T°x") !
for every x, ' € X and that

inf{p(x, u) +p(x, T°x): xe X} >0
for every u e X with u T”u. Then z is the unique common fixed point of T° and 7.
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Proof Applying lemma 1 and by the method similar to the proof of theorem 1, T° has a unique fixed point
z. Then T*(Tz) =T(Tz) =Tz, so we see that Tz is also a fixed point of 7°. Since the fixed point is unique, we
must have Tz =z.

Theorem 3 Let (X, d)and (Y, p) be two complete metric spaces. Let p, be a w-distance on X and p, be a
w-distance on Y. If T is a continuous mapping of X into Y and S is a mapping of Y into X satisfying the

inequalities
pi(sy, sy )p, (STx, STx') <emax|{p, (sy, sy )p,(Tx, Tx'), [p,(sy, ") 1%, pi(x, 2" )p, (sy, sy'),
pi(sy, STx)p, (sy", STx') | (18)
pa(Tx, Tx')p, (TSy, TSy') <emaxip, (sy, sy’ )p,(Tx, Tx'), [p,(Tx, ') 17,
P2 (y, ¥ po (Tx, Tx') ,p, (Tx, TSy)p,(Tx', TSy") | (19)

forall x, x"e X and y, y' €Y, where 0 <c <1. Then
(D For each x e X, both { (ST)"x=x,} and {T(ST)" 'x =y, | are Cauchy sequences;
@ Assume that inf{p, (x, u) +p,(x, STx): xe X} >0 for every u € X with u# STu. Then ST has a fixed
point z in X.
Assume that inf{p,(y, v) +p,(y, TSy): ye Y} >0 for every v e ¥ with v T'Sv. Then TS has a fixed point
w in Y. Further, Tz =w and Sw =z.
Proof (D Let x be an arbitrary point in X. Define the sequences {x,| in X and {y,} in ¥ by
(ST)'x=x,, T(ST)" 'x =y,
for every n e N. Applying inequality (18), we get
P,y x,)p(x,, 2,,0) =p (sy, 1y sy,)p (STx, .y, STx,) <
emax {p, (%, , 2,)p:(¥,s ¥uir) s [P (2,0, xn)Jz’ [pi (%, xn)]27
i,y x,)p (5, 2,0

no

from which it follows that
pi(x,, %) <emaxip (%, , x,), p, (¥, ¥,0) ! (20)
Applying inequality (19), we get
P2 (Yucts ¥ )P (Vs ¥uir) =pa (T, 5y Tx, )y (TSy, .y, TSy,) <
emax{p, (x, 5 2,02 (¥urs %) s [pa (s v) 12 [pa (s v) 17,

P2 (Yuts Y22 (Vs Ya)
from which it follows that

p2<yn’ yn,+1> <CmaX%pl(xnfl ’ xn) ’ p2<ynfl ) yn)# <21)
Let M =max|{p,(x, x,), p,(y,, v,) |, it easily follows by induction that

pi(x,, %) <c'maxip, (x, x,), p,(y,, y,) | ="M (22)

P2(Ys Yuur) <" 'maxip, (x, x,), py(yy, y,) 1 ="M (23)

forn=1, 2, ---. If n <m, then by (22) and (23)
pl(xn’ xm)gpl('xrm xn+l) +pl(xn+l’ xn+2) +oo +pl(xm—l’ xm) <

(¢"+c" "+ k" YM< (1 -¢)'M (24)

P2(Yus ¥u) SP2 (Vs Yart) #P2(Vairs Yusa) + o +02(¥ys ¥) <
("t "TYM<" T (1 =)' M (25)
forn=1,2, ---.Since 0 <c <1, by lemma 1, {x,} is a Cauchy sequence with a limit z in X and {y,} is a Cauchy

sequence with a limit w in Y. This is the proof of (D.
(2 From (24) and definition 1, we have
Pl(xn,z)glimpl(x”,x )<c"(1-¢) M (26)

Assume z7# STz, then by hypotheses (22) and (26), we have
0 <infi{p,(x, z) +p,(x, STx) : x e X| <inf{p,(x,, z) +p,(x,, STx,) : neN| <
inf{c"(1-¢) '"M+c¢"M: neN} =inf{ (2-¢)c¢"(1 —¢) 'M: neN} =0
This is a contradiction. Therefore we have STz =z.
From (25) and definition 1, we have
P2y, w) <limp, (y,, y,) <c"'(1-¢) "'M (27)
Assume w # TSw, then by hypothesis (23) and (27), we have
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0 <infip,(y, w) +p,(y, TSy): yeY{ <infip,(y,, w) +p,(y,, TSy,): neN| <
inf{c¢" "(1 —¢) '"M+c""'"M; neN} =inf{ (2-¢)c""(1 -¢) 'M: neN}| =0
This is a contradiction. Therefore we have TSw = w.
By using the continuity of 7, we now have w = limy, = lirETx,,,] =Tz

n—o

Further, Sw = STz = z. This completes the proof of the theorem.

Corollary 2 Let (X, d) be a complete metric space and let p be a w-distance on X. Let 7' be a mapping of
X into itself. Suppose that there exists ¢ € (0, 1) such that

p(Ty, Ty'")p(T’x, T?x") <emax|{[p(Ty, x') 1*, p(x, x")p(Ty, Ty'), p(Ty, T*x)p(Ty', Tx') |
for all x, x', y, ' in X and that
inf{p(x, u) +p(x, T°x): xe X} >0
for every u e X with us T?u. Then there exists z e X such that z = 77z
Proof By the method similar to the proof of theorem 2, the results follow.
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