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New method to compute the throughput capacity
of HDR wireless networks

Zhang Yuan Bi Guangguo

(National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

Abstract: A new non-parameter method is proposed to compute the throughput capacity region of high data
rate (HDR) wireless networks. We first transform the task of computing the throughput capacity region into a
mathematical optimization problem without introducing any additional parameters. By using a greedy
algorithm to solve the optimization problem, the non-parametric characterization of the throughput capacity
region of HDR can be obtained. By using the new non-parameter method, the HDR throughput capacity region
can be characterized by at most N(M? — M + 1)V ~! linear constraints where N is the user number and M is
the rate set size. The correctness of the new method is verified by several numerical examples.
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Compared with wired networks, the time-varying nature of wireless networks makes providing reliable
multimedia services a challenging problem. Due to path loss, shadowing and multipath fading, the strength of the
received signal can fluctuate on the order of tens of decibels. To combat these effects, resources such as power,
rate and slot should be dynamically allocated.

This paper will study the high data rate (HDR) wireless communication system, also known as IS-856 or
1x EV-DO'"*’, On the HDR downlink, time is divided into fixed-size slots of 1.67 ms. In each slot, the base
station (BS) can serve only one user. Each user constantly reports to the BS its “instantaneous” rate, at which data
can be transmitted to the user if it is scheduled to transmit in the current slot. The date rate can be chosen from a
finite set. A scheduler at the BS picks the next user to be served based on the reported data rate from the user.

Most of the existing work on HDR has been done to design specific wireless scheduling algorithms'">’. In
this paper, we study HDR at a more fundamental level: what is the capacity region of an HDR system and how to
compute it?

In Refs. [ 3, 4], the problem of computing the capacity region of the fading multi-access/broadcast channel
is addressed, and the parametric representation of the boundary of the capacity region is obtained. Since HDR is a
time-division (TD) system, the results presented in Refs. [ 3, 4 ] can therefore be directly used to compute its
capacity region. But, the resulting parametric equations are not convenient to solve problems like call admission
control (CAC). On the other hand, HDR is a special TD system (e.g., adaptive link and no power control), which
can make computing the HDR capacity region from a new point of view, which is different from that of
Refs.[ 3, 4] possible. In this paper, we will derive a new complete characterization of the HDR capacity region,
which is more useful in practice than that of Refs. [ 3,4 ] when dealing with problems like CAC. The main result
of this paper is that the capacity region of HDR can be characterized by at most N(M> - M +1)""" linear
constraints where NV is the user number and M is the rate set size.

By Refs. [ 3, 4], at least two types of capacity region can be defined for fading channels: the throughput
capacity and delay-limited capacity. This paper studies the throughput capacity.

1 Assumptions and System Model

Consider an adaptive time-division downlink consisting of NV mobile users. Suppose that the system supports
M rates and the rate setis {R,,, 1<m<M|. We assume that R, <R, <--- <R,,. Let R;,,; be the feasible rate for
user i (1<<i<<N) in slot ¢, where S, is a random process taking on the values from {1, 2, ---, M|. Let p,(m)
be the stationary probability that S, is m (1 <m <M ). Further, we call S = {S,, ---, S,, ---, S| the joint

channel process and denote 5 as the set of all possible joint channel states. Let p(s) be the stationary probability
that the joint channel state is s € 5.
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In such a system, the time slot is the only resource to be allocated. For a time allocation policy 7, let 7,(s)
(0<7,;(s) <1) be the fraction of transmission time allocated to user i (1<<i<<N) given the joint channel state s

=1{s,, =+, s, ==+, sy for users. All feasible time allocation policies must satisfy
271'(3) =1 Vs e 5 1)
For a ngilven time allocation strategy 7, the achievable throughput of user i (1 <<i<<N) is
¢, = Es[7.(S)R,] = zi_p(S)T,-(S)Rsi @)
where E[ - ] denotes the expectaf[ieo-n function and s, is the i-th element of vector s. Let us define
M
™ L& Y p(s)R, = Zpi(m)Rm (3)

seq

then the range of ¢, (1 <i<N) is 0<c,<c;

max

2 Conventional Method

In Ref. [4], the capacity region for the general TD fading broadcast channel is obtained. Since HDR is a TD
system, we can directly apply the results of Ref. [4 ] to computing the HDR capacity region. Let 3 be the capacity
region of HDR and 3" the boundary of the capacity region. By Ref. [4], 3 is convex. Therefore, if a throughput
vector ¢ is the solution to the optimization problem maxp © ¢, it will be on the boundary 3", where u = {u, ,

Moy oy iyt s i =0(1<i<N),and u, +u, + -+ +uy = 1. After some derivations similar to Ref. [4 ], the
boundary of the capacity region can be characterlzed by the following parametrically defined surface:
3= {er (o ueR“ZM,: } @
where for i =1, 2, -+, N,
M
SEOED LI v S I V) T ©)
m=1 I<k<N, k#i \ j: Ri<(ui/pp) Ry

3 New Method

3.1 Motivation

The above method is based on the property that the capacity region is convex. Due to the convexity, the
boundary of the capacity region can be parametrically expressed as (4), and the consequent task is to derive the
analytical expression of ¢* (u) for any feasible u. Since this method introduces a new parameter variable u to
help characterize the capacity region, it is called the parameter method in this paper.

However, the parameter method has some limitations. Although introducing pu can help characterize 3(and
3"), the resulting parametric expression like (4) is not convenient to be used for some problems. Take CAC as an
example. A typical CAC problem is to determine if a given target rate vector ¢ € 3. In the case of using the
parameter method, this problem is equivalent to checking if there exists a parameter g * such that the inequalities
c<c"(u") can be satisfied. The corresponding computing process can be rather complicated (see Ref. [5] for
an example).

To overcome such limitations, this paper will develop a new method which characterizes 3 in a non-
parametric form like 3 = {¢[f(¢) <O}. Since not introducing any additional parameter variable, it can be
expected that the new method is more convenient than the conventional parameter method when dealing with
problems like CAC. In this paper, we call this new method the non-parameter method, and will derive the non-
parametric representation of 3 for the special case of HDR in this section.

3.2 Problem formulation

To derive the non-parametric representation of 3, the key observation is that the convexity of 3 can be
interpreted from a new point of view as follows. Given a point ¢ = {¢,, ***, c,_,, cyt, we can
define N lines {L,, 1 <n<N|{ through point ¢ in which L, : x, =¢,, | <i<N, i#n. Let the intersection point of
line L, and the boundary 3" be p, = {¢,, -, ¢ ¢ ,c -+, ¢y}. Then, ¢ e is equivalent to checking if

n-1% %n 9 “n+l>

c c

no n+l>s ’
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¢, <c, for all n. Therefore, the capacity region can be expressed as 3 = {¢ I <n<N}. By definition,

n o

¢, represents the maximum rate that user n can achieve given rates of all other -1 users. Then, ¢, is some
function of ¢,(1<i<N, i#n) and can be denoted as

e AfCery oy e0yy Cuprs s Cy) ©)
Hence, the capacity region can be rewritten as

S=ic:c,<f,(c,, ", €ty Coury 0y Cy), 1 <n<N]} ™)

where the function f, (¢,, -+, ¢ c cy) can be obtained by solving the following optimization

n-1>3 n+l>9 ’

problem:
f;l(cl s s Chirs Cupns T, CN) :mag( ¢,
st.c;(1<i<N, i#n) is fixed }
It is interesting to compare (4) and (7) which interpret the convexity from two different points of view. Much
existing work on determining capacity region is based on (4), while this paper will take (7) as the starting point. In

@)

the remainder of this paper, we will obtain the analytical expression of function f, (¢,, *=*, ¢, 1, €,s1s ***» Cx)
for HDR.
By Egs.(1) - (3),
= Yp()7 (R, = T ps) (1- r(s) )R, = - (Spo)n(or, )
ses seZ I<i<N, i#n I<i<N, i#n seZ
©)
Hence, the optimization problem (8) becomes
max et = (s)r,(s)R,
[7:(s), 1<i<N, se 5| 1gi§fz‘#n(s§;~p n ) } (10)
Zp(s)Ti(S)Rs,- =¢,l<isN,i#n

ses

Since the objective function and constraints in (10) are separable in i, to solve (10), we must first obtain the
solution to the following optimization problem for | <i<N (i#n):

min ZP(S>T (S)R
ir;(s), se fse s } (11)
Zp<s>ri<s>R,;i =
Define
Kot my > p(s)T(s) (12)
S:s;=my, s, =my
then the objective function and constraints in (12) become
M M
2p<s)7i<s)Rs" = z 2 2 p(s)Ti(s>Rm Z ZR"’I m, my
seq m=1my=1s:5;=m, s, =my m= lml 1 (13)
M M M
Yps)r ()R, =D Y > p(s)T (R, = Y ZRM Xl =€
sed m=1my=1s:5;=m, s, =my m=1my=1
Additionally, since 0<7,(s) <1, we know that
O<u«x, < X pls)2h", (14)
Sys;=m, s, =my
Thus, the optimization problem (11) reduces to the following one:
ei, n<ci) é . min Z 2 le innml
l«'xﬁ,;‘"m Ism, mysM} ;= 1my =1 (15)
Z Z Rm innml = ci’ 0 s ‘xir;,"m] hin nml
m=1m)=1
Given the solution to (15), then by (8) —(10), (11) and (15), the solution to (8) can be given by
f;z(cl» Uy Chutts Cpvrs T CN) = CTHK - Z ei,n(ci) (16)
I<i<N, i#n

3.3 Solution to optimization problem (15)

Define set £ = {R_ /R

my m>

l$m, mlsM} and vector {{al’ Bl%’%aZ’ BZ}, Tty {OCMZ, ﬁw]z%} isa
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permutation on set £ such that
Ry Bo_ R
R, R )
ay (%) ayR )
Then the solution to (15) can be obtained from the following greedy algorithm’”:
(D Initialization: set " " =0 for all m and m,. Set k =1.

m, m

Bm2

a7)

< - <<

(2) Step k: increase the value of x}; ", until a constraint becomes tight. Goto step & + 1.

@ After M* steps, the optimal solution is reached.

The results obtained by performing the above greedy algorithm are summarized as follows.

Since ¢; appears in the constraint in the (15), the solution e, ,(¢,) depends on c,. Since R, =R, for m =n,
(17) can be further written as

M
%g._'gRﬁM(w-l)/z <l=--=1 <RBM(M+])/Z+] $---$RBMZ (18)
Ral a « RLX‘ 2
M(M~-1)72 M(M+1)/2+1 m ‘
Correspondingly, we can divide the range of ¢, into M> — M + 1 disjoint intervals {I""} such that
M2-M+1
(0 s c;nax ] - Ul ]]L, n (19)
jo
where
j-1 j
i, n i, n . M(M_l)
( = Rakh“kvﬁk ’ !zil Rﬂkhak.m ] I'< I s 2
M(M-1)/2 M(M+1)/2
i,no _ i,n i, n _M(M_1>
]j - ( “~ R‘xkh"%vﬁk’ ; Rﬂkho‘kvﬁk] J = 2 +1 (20)
jHM=2 j+M-1
i,n i,n M( M - 1 ) . 2
( Y Rbilen 3R ] T eSS - M+
All these M* — M +1 intervals can be further classified into three types as follows.
Type 1 {I"", 1<j<M(M-1)/2}. If ¢, belongs to IJ-"” " of this type, then
J-1
) i,n k < ] X ci - AZI R"kh:ktlﬁk
(24750 " = { o oo (agfg) " o= 1)
e 0 k>j ) Raj
The corresponding solution to (15) is given by
R j-1 j-1
B; i,n i,n
€;, L(e) = Ri (ci - /; RH;.»hakvﬁk ) + kz::l RB};hakvﬁk 22)
Type2 {["",j=M(M-1)/2+1}.1f ¢, belongs to I,"" of this type, then
hi}zlﬁg ksw
(x3,) " = 23)
SO UL Y
The corresponding solution to (15) is given by
M(M-1)/2 A
ei,n(ci> =c¢ + I; (Rﬁk - Rak>h:k7ﬁk 24)
Type3 {I"", M(M-1)/2 +2<j<M’ -M+1}. If ¢, belongs to [,"" of this type, then
J+M-=2
, c; — 2 R_h""
i . hz,n k < -+M_l i . 12 - o ag, B
<xu'k,ﬁ,() = { o P ! ’ ( dy,'mfhﬁjwfl) = le (25)
0 k> ] +M -1 -1
The corresponding solution to (15) is given by
RB j+M-2 j+M-2
j+M -1 i, n i, n
€;, W) = R (ci - 2 Rukhak,ﬁk ) + Z RBAhak,Bk (26)
-1 k=1 k=1

Based on the above results (22), (24) and (26), we can conclude that the solution to the optimization problem
(15) consists of M*> — M +1 line segments:
e, (c)=a "c,+b:" el 1<j<M -M+1 27)

where the coefficient pair (a; "

, by") is given by
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Ry R , M(M-1)
B B ihn lsjs——FF—+
(Ra] ’ “— (RBL - RRC‘A-)hdk’Bk) ] 2
M(M-1)/2 '
i,n i, n i, n . M(M_1>
(aj ", b") &4 (1, > (R, = RO, | j= R (28)
Ry .. &3 R : M(M-1)
BJ+M—1 M- i,n ; 2 —
(7, kzl (RBk _MRBk)hakvﬁk) 2 +2<sjsM -M+1
% +M-1 = Q-]

3.4 Final result

Substituting (27) into (16), the solution to (8) is composed of (M> =M +1)""" line parts:

.f;l(cl b o b Cn—l b CY[+1 b o b C[V) = c:lﬂx - l<<2\ # <a;; nci + b;[' ,l) cl E I///; ! (29)
where 1 <j, <M’ —M +1. Then by (7), the capacity region is given by
S={cie, <™ - Y (a e, +b"), 1<j, <M -M+1,1<n<N} (30)

1<i<N, i#n

To give a brief expression of 3, letj" = {j,, ==+, j._,, 0, j..,, ===, jy| where 1 <j. <M* -M +1 for i#n
and denote J" as the set of all possible j". Further, define

@G &Ly L ) 'l o
bn(j") é c;lnax _ z b;i, n
1<i<N, i#n
Hence, the capacity region of HDR can be finally given by
S=ic:a"(j) re<b"(j'), j e, I<n<Nj| (32)

By (31), there are totally N(M* =M +1)""" possible (a"(j"), b"(j")) pairs. Therefore, we can conclude
that the capacity region of HDR is the set of rate vectors which satisfy N(M> — M +1)" " linear constraints at the
same time. Compared with the conventional method (4)-(5), since the new method (7) does not introduce any
additional parameter variable, the new characterization (32) is more convenient than (4)-(5) to solve problems like
CAC.

60 ==

4 Numerical Examples

In this section, we present numerical results for the capacity
region of HDR under various parameter settings. The capacity ~ 40f
region obtained analytically in (32) leads to N(M* — M +1)""! '; 20l
linear equations that can be computed easily to obtain the numerical =
results. 320
In Fig. 1, we plot the capacity region of HDR with the user 10
number N =2. The rate set is {10, 20, ---, 90} (kbit/s) and the rate NN
set size M is 9. The pdf of channel state process of user i is p,(m) % 10 20 30 4 50 6

=1/M (1<i<N, 1<m<M). Under the parameter method (4)- _ er/(kbit-s™1)
(5), the HDR capacity region is characterized by parameter . = {u, , Fig.1 HDR capacity region (N'=2, M =9)
M, | where p, +u, =1. As y,(or u,) varies from 0 to 1, we get all 50 ===
points on the boundary of the region. On the other hand, under the :(5)
non-parameter method (32), the capacity region is characterized by 35}
N(M?* =M +1)""" =146 linear constraints. In Fig.1, we see that s 30f
these two methods give the same result, which has been expected £ 5l
since they characterized the same region. Additionally, although the 3 15t
non-parameter method (32) specifies 146 linear constraints, only 55 \
of them are linear independent. In Fig. 2, we plot the capacity o- .
region of HDR as M varies from | to 9. The rate set is {R,, 2R,, 03 105 221 /Z(Skbisg_lis 0550
, MR, !} (kbit/s). The pdf of the channel state process of user i is Fig.2 HDR capacity region (N =2, M =1,

p;(m) =1/M (1<i<N, 1<m<M) such that both ¢/"* and ;" 2, . 9)
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equal [(M +1)/2]R,. Let R, =100/(M + 1), then ¢/™ and ¢ are
fixed to be 50 kbit/s under different M. In Fig.2, we can also see
that the results given by the two methods are the same.

In Fig.3, we plot the three-dimensional capacity region of HDR
with the user number N =3. The rate set is {10, 20} (kbit/s) and the
rate set size M =2. The pdf of the channel state process of user ¢ is
p,(m) =1/M (1<i<N, 1l<m<M). Under the non-parameter
method (32), the capacity region can be characterized by N(M* - M

+1)""" =27 linear constraints. Checking these constraints, we find ~ Fig.3 HDR capacity region (N =3, M =2)
that only seven of them are linear independent as follows: S, : ¢, +¢,

+2¢,<30,S5,: 2¢; +¢, +2¢, <35, S;: ¢, +cy +¢;<20,S,: ¢; +2¢, +2¢;, <35, S5: 2¢, +¢, +¢; <30, S¢: 2¢, +
2¢, +¢, <35, and S, : ¢, +2¢, +¢;<<30. On the other hand, since the conventional method characterizes the HDR

c3/(kbit's_l)

capacity region by parameter g = {u,, i, , 3| Where u, +u, +u; =1, it is not easy for the parameter method to
plot the same figure. Further, since above seven equations can be directly used to determine if a given rate vector
¢ € 3, the new method is more convenient than the conventional one to solve problems like CAC.

5 Conclusion

This paper studies the HDR capacity region. Starting from a new point of view which is different from
existing work, we show the HDR capacity region can be characterized by at most N(M° — M +1)""" linear
constraints. The new method is more useful than the conventional one to solve problems like CAC.
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