Journal of Southeast University (English Edition)

Vol. 20

No.3 Sept. 2004 ISSN 1003—7985

TaChord: a Chord system using topology-aware routing
and super peers

Chen Dongfeng

Yang Shoubao

Peng Xiaoyan

(Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China)

Abstract: Due to minimum consideration of an actual network topology, the existing peer-to-peer (P2P)
overlay networks, such as CAN, Chord, Pastry and Tapestry, will lead to high latency and low efficiency. In
TaChord, a topology-aware routing approach in P2P overlays and an improved design in Chord are presented.
TaChord and other algorithms are evaluated by physical hops, interdomain-adjusted latency, and aggregate
bandwidth used per message. Experimental results demonstrate that TaChord has the drastic improvement in
routing performance where average physical hop is half that of chord, and the impact of cache management

strategies in the TaChord overlay cannot be neglected.

Key words: peer-to-peer network; topology-aware routing; super peer; Chord

Peer-to-peer (P2P) Internet applications have
recently been popularized through file sharing
applications such as Gnutella'" and Freenet'”’. These
systems have many interesting technical features such
as decentralized control, self-organization, and
adaptation. However, these systems, such as Gnutella,
may have scaling problems. Meanwhile, several
research groups have developed a new generation of
scalable P2P systems that support distributed hash
table (DHT) functionality; among them are
Tapestrym, Pastryw, Chord"’, and CAN'*'. In these
systems, files are associated with a key, and each node
in the system is responsible for storing a certain range
of keys.

Chord, in its original design, does not consider
network proximity at all. As a result, messages may
travel arbitrarily long distances over the Internet in
each routing hop. And it assumes that nodes in the
system are uniform in resources such as network
bandwidth and storage. This results in its routing
without taking actual network topology and
differences between node resources into consideration.
In topology-aware Chord, a secondary overlay layered
on Chord maintains characteristics of Chord.
Topology-aware routing algorithms will not ignore the
latency of individual hop, and are prone to result in
low latency paths. In fact, in Ref.[7], it shows that
topology-aware Tapestry has greatly improved point-
to-point routing distance and reduced network band-
width usage.

In Ref. [8], a super-peer network has the

Received 2003-09-05.

Foundation item: The National Natural Science Foundation of China
(No. 60273041).

Biographies: Chen Dongfeng(1979—), male, graduate; Yang Shoubao

(corresponding author), male, professor, syang@ ustc.edu.cn.

potential to combine the efficiency of centralized
search with the autonomy, load balancing and
robustness against attacks provided by distributed
search. In this case, we also adopt super peers in
topology-aware Chord. These super peers maintain
node ID lists of the autonomous system (AS), as well
as routing cache.

In this paper, we present our P2P system based
on the Chord system, and demonstrate its potential
performance benefits by simulation.

1 Chord Routing and Key Location

Chord uses a one-dimensional circular key space.
Messages are forwarded only in the clockwise
direction in the circular ID space. The node is called
the key’ s successor, whose identifier most closely
follows the key. When a lookup message begins, the
node checks its finger list and selects a node closest to
the key. In an N-node Chord, each node maintains
information only about O(log N) other nodes. Routing
efficiency depends on the finger list of O(log n) nodes
spaced exponentially around the key space. All
lookups need O(log n) messages to other nodes. When
a machine joins or leaves, the routing information up-
dates require O(log” n) messages.

1.1 Hash function

As described in Ref. [5], a hash function such as
SHA-1 maps nodes and keys onto an m-bit circular
identifier space. It defines a successor of a key % as
the node, which equals or follows % in the identifier
space. This node is called the successor node of key £,
and it stores the key k. That is, each node with a
hashed identifier hid is responsible for all hashed keys
k such that

274 Chen Dongfeng, Yang Shoubao, and Peng Xiaoyan

k € (predecessor (hid), hid]

If the node successor (k) is found, it shows that the
routing is successful.

If m is not taken properly, there is a chance of a
collision where some nodes hash to the same
identifier. However, in SHA-1 hash function, m is
large enough to make it impossible. A unique suffix,
such as the node’s IP address and port, also can be
appended to the identifier for each node to ensure
unique identifiers.

1.2 Routing and key location

In the m-bit circular identifier space, each node
maintains a finger table with m entries. The i-th entry
in the table at node n contains the identity of the first
node, s, that succeeds n by at least 2" on the
identifier circle, i.e., s = successor ((n +2'~") mod 2™),
where 1 < i < m. The node n.successor is the
immediate successor of n on the identifier circle, and
n.predecessor is the immediate predecessor of n on the
identifier circle.

Fig.1, as described in Ref.[5], shows an example
of interval routing. There are three nodes whose
identifiers are 0, 1, and 3. The finger table of node n
=1 stores the successors of identifiers (I +2°) mod 2°
=2, (1 +2") mod 2° =3, and (1 +2°) mod 2° =5,
respectively. The successor of identifier 2 is node 3, as
this is the first node that follows 2, the successor of
identifier 3 is node 3, and the successor of 5 is node 0.
There are three keys whose identifiers are 6, 1, and 2,
which belong to node 0, 1, and 3, respectively.

Finger table Key 6
Start | Interval|Successor
1 [1,2) 1
2 |[2,4) 3
4 |[4,0) 0
Finger table Key 1
Start | Interval|Successor
2 |[2,3) 3
3 [[3,5)] 3
5 [5,1) 0

Finger table Key 2

Start | Interval|Successor
4 [4,5) 0
5 |57 o0
7 [7,3) 0

Fig.1 Key and finger table associated to each node

Suppose node 1 wants to find the successor of
identifier 5. Since 5 belongs to the circular interval [5,
1), it belongs to the second finger interval. Therefore,
node 1 checks the successor, which is 0. Because node

0 is the successor of key 5, node O will return the
result to node 1.

In Chord, nodes can join and leave at any time. It
must preserve the ability to locate every key in the
network, when nodes join and leave. More details are
discussed in Ref. [5].

2 Topology-Aware Chord Routing

Here we present the overall design for the
topology-aware Chord with super peers, and design
algorithms for the topology-aware routing. In peer-to-
peer systems, transfer of data between peers is no
longer simple and uni-cast. It is associated with the
real network, where there are a number of traditional
servers, middleware forwarding and routing layers,
and so on. And communication performance is very
important in peer-to-peer systems. So we utilize the
network topology in Chord. In the area hierarchym of
real networks, a set of routers are grouped into a level
0 area, a set of level 0 areas are grouped into a level 1
area, and so on. Level £ routers keep routing
information on all other level £ areas within its own
level £ + 1, and all level £ — 1 areas within itself. It
means that routers become bottlenecks. However, we
modify the technology of routing indices''*’, which
allow peers to forward queries to neighbors that are
more likely to have answers.

In the topology-aware overlay, the routing idea is
to choose routing table entries which refer to the to-
pologically nearest among all nodes. At the same time,
Wwe use super peers to improve routing performance on
the overlay. These super peers have high bandwidth
and the ability to fast access to the wide-area network.
A TaChord system, a topology-aware Chord system
with super peers, provides a shortcut routing algorithm
by looking up super peers’ caches.

To describe how a TaChord functions, we will
first give an overview, and then describe the TaChord
routing in detail.

2.1 TaChord construction

A node in a TaChord system maintains the
following data structures: () Finger table, which is a
successor list of nodes that immediately follow it in
the key space, as described in Chord; 2 Routing table
with a few entries, which is constructed according to
the physical network topology; @ Local node ID list,
which consists of all nodes in the same AS; @ Key
caches (only if it is a super peer), which is used in the
shortcut routing. Here is an example of TaChord
routing in Figs.2 and 3.

TaChord: a Chord system using topology-aware routing and super peers 275

Cache (optional) Finger table Pointer table
1D 1P D 1P ID P
hash_1 [IP_1 suc_1 | IP_1 file_1 | IP_1
hash_2 | IP_2 suc_2 | IP_2 file_2 | IP_2
hash_3 | IP_3 suc_3 | IP_3 file_3 [IP_3
Routing table Local node table
1D 1P 1D 1P
neighbor_1| IP_1 ID_1 | IP_1
neighbor_2| IP_2 ID.2 | IP_2
neighbor_3| IP_3 ID.3 | IP._3

(b)
Fig.2 Structure of route table. (a) Network topology;
(b) Route table

Hash ID

EF GH
Node 1D
Fig.3 Routing path of TaChord and Chord

L1 1 L1
ABCD L MN

In this example, node b is a super peer. Suppose
node a wants to find the successor of some key, node
g. In Chord routing, node a checks its finger table and
selects the next node, m. The node a forwards
messages to node m, and so on. As a result, the
routing path of Chord is as follows: a—»m—c—f—1—
g.

In the topology-aware Chord routing algorithm,
node a makes out node g from the finger table as it
does in Chord, then simultaneously picks up node b in
its local node list. Since it is closer to the destination,
node b is selected as the next node. If node b is a
super peer without routing cache, it will do next as its
former node a does. Node b forwards messages to the
next node e. Finally, the successor of the key node g
is found. We receive the routing path of topology-

aware Chord as follows: a—b—e—g. If node b is a
super peer with routing cache and the key is just in
the cache entries, node b will directly send messages
to the destination. As discussed above, the TaChord
routing path is a—b—g.

We calculate the routing latency. Each inter-
domain hop counts as 3 hop units of latency. The
routing latency of TaChord, topology-aware Chord
without cache, and Chord are 4, 5, 15, respectively.
TaChord shows the drastic improvement in latency.
We also present other performance improvement in
section 3.

2.2 Routing algorithm

There are different communication properties,
such as for content-based or policy-based routing[“].
We choose policy-based routing, which can be used to
meet quality of services (QoS) requirements and
enforcing message delivery order policies across
peers.

Here we describe routing algorithms required for
a topology-aware Chord. When it receives a routing
message, a node n firstly checks its finger table,
routing table and local node ID list. If the node where
the key is stored is not found, it will be sent to the
node’ s super peers. If the super peers’ caches show
that no other node has looked up the key before, the
node n needs to determine the next node closest to the
message destination from these data sets above. The
following is the pseudo code of TaChord algorithm.

route(n, key)

if(n.precedor < key && key < = n.hashid)

return n;
else
if(lookup _ Superpeers(n.key))
return n;
n _1 =lookup _ in _ fingertable(n, key);
n _2 =lookup _ in _ routingtable(n, key);
n _3 =lookup _ in _ localnodelist(n, key);
next = min _ distance(n _ 1, n _2, n_3, key);
return route(next, key);

n is the node which wants to find the successor
node of an identifier key. The algorithm firstly checks
whether current node is the node responsible for the
key. To reduce message traffic in an inter-domain
network, super peers keep a cache to store remote
nodes with which those nodes in the same domain
have communicated. If the destination is found in the
cache, it is returned to the sender. If not, n picks the
node closest to the destination node. The process
continues in a similar fashion to the next node next
till the query is satisfied.

To initiate the cache of super peers, all nodes in

276 Chen Dongfeng, Yang Shoubao, and Peng Xiaoyan

the same domain will send the query result to its super
peers as soon as the query is finished, and super peers
will add the result into their cache. Many strategies are
used in managing these cache entries. As we will
present following, there are three popular policies:
FIFO (first-in-first-out), LFU (least frequently used),
and LRU (least recently used).

3 Evaluation and Results

In this section, we present some analysis and
simulation results showing the
improvement possible with the use of TaChord. We
intend to obtain results on the following questions:

e What is the performance improvement with the

performance

use of TaChord compared with existing algorithms?

e What is the influence of the sum of super peers k&
in a domain on the efficiency of the TaChord
construction?

e What is the difference of policies used in
managing super-peer cache?

Before presenting our simulation results, we first
describe a network simulator and network topology we
use.

3.1 Network topology

We use BRITE[m, a topology generator, to
implement our simulation. Recent empirical studies
have shown that Internet topologies exhibit power
laws of the form y =x“ for the following relationships:
(D Outdegree of node versus rank; 2 Number of
nodes versus outdegree; (3 Number of node pairs
within a neighborhood versus neighborhood size (in
hops); @ Eigenvalues of the adjacency matrix versus
rank. Some generated topologies may not obey power
laws @ and @. In Ref. [9], BRITE is a more realistic
topology generator, which generates truly
representative Internet topologies.

Here we use a two-level hierarchical topology
generated by BRITE. The hierarchical topology was
generated by the bottom-up approach. The router-level
topology used Waxman models, and router nodes were
assigned to AS in the way of heavy-tailed form. We
constructed Chord networks of size 4 096, and marked
100 as the size of AS.

3.2 Hop and latency

We measured the performance of hop and latency
using three algorithms: original Chord, topology-aware
Chord without super peer cache, and TaChord. The
TaChord parameters are set to super-peer set size k =3
and FIFO cache removal strategy. We measured the
hops and latency F (probability density function) of

different algorithms.

Fig. 4 shows a distribution of the hop per
message. Both topology-aware Chord without super
peer cache and TaChord algorithms improve upon
original Chord point-to-point routing. This is because
topology-aware =~ Chord incorporates topology
information to routing. As also shown in Fig. 4,
TaChord offers maximal improvement. In TaChord, if
the destination is found in its super peer cache, the

node sends the message directly to the destination.
0.30r
0.257
0.20
0.15}
0.10
0.05}

—o— Chord
—+— Topology-aware Chord
x —=— TaChord

0 2 4 6 8 10 12 V 14
Physical hops
Fig.4 Distribution of physical hops

When it comes to the fact that inter-domain
routes have higher latency, Fig.5 shows a PDF where
each inter-domain hop counts as 3 hop units of
latency. We use max as the metric, which is the value
corresponding to maximum probability. It is easily
made out that the value of max is 12 for TaChord,
while the value is 21 for Chord. It shows that
topology-aware Chord still presents a great
improvement in the PDF of the latency.

—o— Chord
—+— Topology-aware Chord

—=— TaChord

Physical hops
Fig.5 Distribution of latency

We finally measure the aggregate bandwidth
taken per message delivery, using units of (average
size of MSG x hops). As shown in Fig.6, when we do
not take intra-domain bandwidth used into account,
TaChord dramatically reduces inter-domain bandwidth

357

30 b —o— Chord
s —— Topology-aware Chord

20 -
Iz, et

15
10

Physical hops
Fig.6 Aggregate bandwidth used per message

TaChord: a Chord system using topology-aware routing and super peers 2717

usage per message delivery. That is because TaChord,
which uses cache and topology information, forwards
messages directly to the destination, and reduces
message forwarding on the inter-domain.

3.3 Super peer redundancy

A super peer may become a single point of
failure for its domain. That is, when the super peer
fails or leaves unexpectedly, the local node list may
be destroyed and cache in the super peer will be not
available any longer. In Ref[8], super-peer
redundancy is introduced into the design of the super-
peer. All super peers in the same domain share with
equal responsibilities. When a node receives a query
message, it sends the query to each super peer in the
same domain in a round-robin fashion. We only
considered the cases where £ =1, 3, 5, respectively,
and we constructed Chord networks of size 1 024, and
marked 50 as the size of AS.

As shown in Fig. 7, super-peer redundancy is
good. In Fig.7(a), the curve of the case where k =5
drops rapidly after 3 physical hops. We can see that
both physical hops and latency improve greatly as k
increases. This is expected, since a k-redundant super-
peer has much greater availability and reliability, and
has cache entries £ times more than a single super-
peer.

0.251
0.20

0.15F
=

0.10f

0.05
0

0 2 4 6 8 10 12
Interdomain-adjusted latency

(b)

Fig.7 Performance of k-redundancy. (a) Distribution of

physical hops; (b) Distribution of latency

However, super-peer redundancy costs a lot.
When a node joins or leaves, each super peer must
receive or update metadata. Each super peer maintains
cache, and the aggregate cost of cache memory is k

times greater than a single super-peer. Besides, when a
node sends queries to each super peer in a round-
robin fashion, it must increase intra-domain network
traffic.

3.4 Cache removal policy

Here we compare the performance of some
simple cache removal policies, such as FIFO, LRU,
and LFU. To simplify the analysis, we consider the
case where the keys are limited in one part of the one-
dimensional circular key space. Fig.8 shows that LRU
and LFU show a little improvement in hops and
latency found in the simplistic simulation. We can see
that different cache management strategies affect the
performance improvement of TaChord system.

12 ¢
10¢
8(
6K [FIFO
LRU

A [|

[ru
2

Average hops Average latency

Fig.8 Average hops and latency of a 4 096 node network
with 100 domains

4 Conclusion

This paper presents a study of topology-aware
routing in Chord. We present improved routing in
Chord, which significantly reduce the overhead of
routing and bandwidth consumption in an inter-
domain overlay. Simulations confirm that TaChord
yields good performance at low overhead. Super-peer
redundancy is good, and also increases the overhead
of topology-aware overlay construction and
maintenance. Cache management strategies can also
affect the performance improvement in TaChord. The
investigation of the overlay maintenance, super-peer
size, and cache removal policies is ongoing.

References

[1] The Gnutella protocol specification v0.4 [EB/OL].http:
//www.clip2.com. 2003-06.

[2] Clarke Ian, Sandberg Oskar, Wiley Brandon, et al. Freenet:
a distributed anonymous information storage and retrieval
system[EB/OL]. http:/ freenet.sourceforge.net. 2003-06.

[3] Zhao Ben Y, Kubiatowicz John. Tapestry: an infrastruc-
ture for fault-tolerant wide-area location and routing[R].
Computer Science Division University of California, UCB/
CSD-01-1141,2001.

278

Chen Dongfeng, Yang Shoubao, and Peng Xiaoyan

(4]

(5]

[6]

(7]

(8]

Druschel
decentralized object location and routing for large scale

Rowston Antony, Peter. Pastry: scalable,
peer-to-peer systems [R]. Cambridge: Microsoft Research
Ltd, 2001.

Stoica Ion, Morris Robert, Karger David, et al. Chord: a
scalable peer-to-peer lookup service for internet
applications[A]. In: ACM Sigcomm[C].2001.2 —10.
Ratnasamy S, Francis P, Handley M, et al. A scalable
content-addressable network [A]. In: ACM Sigcomm [C].
2001.1—3.

Zhao Ben Y, Duan Yitao, Huang Ling, et al. Brocade:
landmark routing on overlay networks[A]. In: Electronic
Proceedings for the 1st International Workshop on Peer-to-
Peer Systems (IPTP’ 02) [C]. Cambridge, 2002.2 —5.
Yang Beverly, Garcia-Molina Hector. Designing a super-
peer network [A]. In: 19th International Conference on

Data Engineering , IEEE Computer Society] C]. Bangalore,

(9]

[10]

[11]

[12]

2003.3 —6.
Tsuchiya P F. The landmark hierarchy: a new hierarchy
for routing in very large networks [J]. Computer
Communication Review, 1988, 18(4): 35 —42.
Crespo Arturo, Molina Hector Garcia. Routing indices for
peer-to-peer systems [A]. In: Proceedings of the 22nd
International Conference on Distributed Computing Systems
(ICDCS’02) [C]. Vienna, Austria, 2002. 23 —34.
Lee Craig A, Coe Eric, Michel B Scott, et al. Using
topology-aware communication services in grid
environments [A]. In: Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGRIDO3) [C]. Tokyo, 2003. 1 —6.
BRITE, a network topology generator[EB/OL] .http: //
www.cs.bu.edu/brite/. 2003-06-02.

TaChord: 7] AN E X R E &
BT =8 Chord &%t

hA%E AR
(P EAFHERKFHENAFHAK R, A 230027)

WE: T AZEETFMEIEIEH, BT LML F ML 2% AL SERIK RN LR AR
th—Fr 5 5 B M &6 4h 25 My AR % 69 36 o 7y ik, FFIT R s —#P 2L T Chord #9 TaChord % %. 45 A %
Gop, A BBk A 3R] 2E R Fe AN B b R 69 A 5T R TaChord A= 3 fb 2 Zo 09 56 d M4k, 15 A
25 R &R, TaChord A 4t 3 M aEA T M KI5, 4o F 3 HE M2 Chord 49— F, 3+ LR F
¥4 W 45 A5 75 28 % 0% 37 TaChord #9 % W M Ak AL = & & 209 % h.

KR *TE ML JpA KR g AT K, Chord

FESZ%ES: G237.5; H315.9

