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Abstract: A robust and efficient algorithm is presented to build mulitiresolution models (MRMs) of arbitrary
meshes without requirement of subdivision connectivity. To overcome the sampling difficulty of arbitrary

meshes, edge contraction and vertex expansion are used as downsampling and upsampling methods. Our
MRMs of a mesh are composed of a base mesh and a series of edge split operations, which are organized as a
directed graph. Each split operation encodes two parts of information. One is the modification to the mesh, and
the other is the dependency relation among splits. Such organization ensures the efficiency and robustness of
our MRM algorithm. Examples demonstrate the functionality of our method.
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Triangle meshes and piecewise parametric
patches (e.g. trimmed non-uniform rational B-spline
(NURBS) surfaces) are two of the most popular
choices for surface representations. Compared with
NURBS patches, triangle meshes have advantages in
representing objects with arbitrary shapes and detail
levels, as well as being computationally efficient and
robust. Because of these advantages, triangle meshes
are widely used in many applications such as
computer animation, visualization, robotics, tool path
generation, reverse engineering, and rapid prototyping
manufacture.

However, with the improving ability of scanning
instruments, meshes generated from a digitized set of
points usually have a large number of vertices and
faces. It is inefficient and unnecessary to use these
unprocessed models directly in all cases and
sometimes it is even impossible to utilize such meshes
directly, for example browsing a 3-D mesh through
the Internet with limited bandwidth. Thus, operations
such as mesh simpliﬁcation“fs] and progressive
mesh '’ appeared, which partly solved the problem.

Multiresolution analysis”’gJ(MRA) is a powerful
tool of signal process. In mesh processing, MRA
means to create representation of a mesh at different
levels of detail. A multiresolution model (MRM) of
mesh is represented by a base mesh plus a collection
of mesh modifications which possess some relations
between each of them. MRMs of meshes are
convenient for a number of applications, including
compression/simplification, progressive display and
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transmission, level-of-detail control, multiresolution
editing, etc.

Sampling is a base operation for creating MRMs
of meshes. But unfortunately, unlike regularly sampled
data, such as waves or images, of which the
downsampling and  upsampling method are
straightforward, triangle meshes with arbitrary
connectivity form an inherently irregular sampling
setting. Therefore, new algorithms need to be
developed.

Data structure is the other pivotal factor for
MRMs to be successfully employed. It should have a
low overhead with respect to storing just the mesh at
the full resolution and support efficiently algorithms
for selective refinement, as well as algorithms for
performing spatial selection, such as a point location,
a window, or a range query.

In this paper, we present a robust and efficient
algorithm to build MRMs of arbitrary meshes without
requirement of subdivision connectivity. A new mesh
simplification method is developed to overcome the
sampling difficulty of arbitrary meshes. Edge
contraction and vertex expansion are used as
downsampling and upsampling methods, respectively.
Our MRMs of a mesh are composed of a base mesh
and a series of edge split operations. With such
organization of MRMs, refining, coarsening and
selective refining of a mesh are allowed to be
executed more easily and interactively.

1 Sampling

Sampling of arbitrary mesh is difficult because
meshes are usually defined on a 2-mainfold. The
connectivity of a mesh is much more complicated than
that of a wave or an image. In order to simplify both
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geometry and connectivity through downsampling,
mesh simplification is the best choice. The reverse
operation of mesh simplification, mesh expansion, is
therefore used as upsampling.

However mesh simplification should be executed
carefully so that smooth sampling results can be
reached. In this paper, we present a new mesh
simplification algorithm based on consecutive edge
contraction (see Fig.1). To avoid the accumulation of
each contraction step’s error, the simplification
algorithm should compute the contraction cost using
the information of original mesh. To do this, we select
some sample points from the original model, and
distribute them into each triangle. Throughout the
simplification, we keep these points and use them to
calculate the cost of a contraction. If a triangle is
deleted, the sample points attached to it will be
redistributed to other relative triangles. Thus the
original information is kept. We use L_ error to
evaluate the approximation of the simplification. But
our method is a little different from Garland’s' .
While computing the approximation, Garland uses the
distance from a point to the plane in which the
triangle lies, no matter whether the projection of the
point to this plane falls into the triangle or not. This
causes the disturbance of the error evaluation and
affects the simplification quality. To overcome this, we
use the distance from a point to the triangle instead of
the plane to calculate the approximation, which will be
explained later in detail.

‘A‘A Contraction
UL =

Fig.1 Edge contraction and vertex split

The outline of the algorithm is as follows:

1) Select a set of candidate vertex pairs.

2) Select a set of sample points and distribute
them to each triangle.

3) Calculate a cost of contraction to each
candidate pair.

4) Consistency checking.

5) Place all candidates in a queue keyed to the
cost with the minimum cost pair at the top.

6) Repeat until the desired approximation is
reached:

(D Remove the pair (v, v;) of the least cost from
the heap;

(2 Contract this pair;

@ Redistribute the sample points of deleted
triangles;

@ Update the costs of all candidate pairs

involving v.
1.1 Candidate pairs

There are two ways to select candidate pairs. The
first one simply selects all edges of M, as candidate
pairs. This is the most natural and efficient way. The
second one selects not only all edges of M, but also
some non-edge pairs of which the length is less than a
threshold. This selection is beneficial if the original
model has more than one connected part, because
contraction of a non-edge pair can bring unconnected
parts into one part, thus producing better
approximation. However, contraction of non-edge
pairs can also produce a non-manifold surface.
Moreover, identifying all suitable non-edge pairs is a
time-consuming job though many methods have been
proposed. For our algorithm, we use the first choice to
prepare candidate pairs.

1.2 Sample points

Sample points are used to calculate the
contraction cost, which means the approximation of a
simplified mesh to the original model. Therefore they
should catch as many details of the original model as
they can. More sample points usually bring out better
simplifying quality, but the tradeoff is the decreasing
of the computing speed. With these considerations, we
use a self-adaptive way to select sample points. That
is, for an original mesh M, = (K, V), firstly, all
vertices from V are selected as sample points;
secondly, in those areas with sharp features, more
sample points should be selected. If the dihedral angle
of an edge is greater than a user-specified value, the
edge is defined as a feature edge. Another case of
feature edge is boundary edge, which only has one
neighboring triangle. All feature edges form a set E..

We select additional sample points as follows:

1 oo
sz{v\v:?(vi+vj), %L,]}eEf} 1)
The final sample points are
V=V UV, @)

After sampling, all sample points are distributed
to the triangles on which they lie (see Fig.2(a)). While
computing the contraction cost, if an edge (v,v;) is
deleted, only its 1-ring neighbor area (shaded area in
Fig.2) is modified. Therefore, the contraction cost, i.c.,
the error caused by this edge contraction, can be
computed locally by using the sample points of the
involved triangles.

If a triangle is deleted, its sample points will be
redistributed to relatively live triangles, which will be
discussed later. This makes sure that each contraction
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(a)

(b)
Fig.2 Sample points. (a) Before contraction; (b) After contraction

is computed based on the information from the
original model.

1.3 Contraction cost

An edge contraction deletes an edge and its two
neighbor faces (one if it is a boundary edge), thus
changes the surface of the model (see Fig.2). There
are two factors that decide the cost of an edge
contraction. One is how to place the target vertex; the
other is error evaluation policy.

1.3.1 Vertex placement

After an edge was deleted, we need some way to
place the target position of v. How to place the target
position decided how the shape of modified area
changed into. When choosing the target vertex place-
ment, we must trade space and time efficiency against
the approximation quality.

Subset placement is the simplest strategy, which
is quite efficient. We simply select one of the
endpoints as the target position. To choose it between
endpoints, we merely find the vertex which has
smaller contraction error. Under this policy, an
approximation will use a subset of the original
vertices in their original positions. Subset placement is
more efficient when we create the MRM or
progressive mesh, since it can significantly save
storage. This becomes even more important when
meshes possess material properties.

However, when an edge is collapsed, subset
placement contracts the model volume in convex
regions and inflates it in concave regions. In order to
preserve the model volume better, we develop a new
method called volume optimal placement.

Fig.3 shows the volume change after an edge v,v;
was contracted. v is the new vertex. From Fig.3 we
can see that each triangle in the 1-ring neighborhood
of v,v; and the new vertex v form into a tetrahedron.
The model volume change is made up of all these
tetrahedrons. For each tetrahedron, the volume V;, is

D R RN S
Vi_6ni(v vo)—6(n,-v+d) 3)

where n; is the normal vector of each triangle, v is the
new vertex, v, is a vertex of each triangle, and d =
-nv,.

Discarding the magnitude coefficients, the
squared volume of a tetrahedron is given by the
following equation:

V=(nlv+d)’=(v'n, +d)(n]v +d) =

vinn'v+2(dn)"v +d’ =
vIAY +2b]v +¢, )
The summation of squared volume change is

J) =Y V=Y (vVAy +2blv +¢,) =
VIY Ay 423 biv+ Y ¢ =

v'Av +2b'v + ¢ 5)

Fig.3 Volume change caused by an edge contraction
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In order to best preserve the model volume
during the simplification, we want to place the new
vertex v so that the volume change caused by an edge
contraction is minimized. Since f (v ) is quadratic,
finding its minimum is a linear problem. Taking partial
derivatives, we can see that the gradient of f(v) is

Vf(v) =24y +2b 6)

Solving for Vf(v) =0, we find the optimal
position is

v=-A""b 7)

Sometimes, a unique optimal position may not
exist. If A is singular, its inverse does not exist, and
we cannot solve for v using Eq. (7). In this situation,
subset placement is used.

1.3.2 Error evaluation

How to evaluate the change is very important to
a simplification algorithm. L, error evaluation is an ac-
cumulation of errors, thus it is dependent on the trian-
gulation and sampling method. The L, errors of those
areas with more sample points are greater than those
with fewer sample points. L error does not have this
disadvantage. Theoretically, Hausdorff distance is used
to describe the L error measurement between two me-
shes. In practice, however, this error metric can be
prohibitively expensive to compute. Some localized
measurements must be found to save both time and
memory. From Fig.3, we can see that the changed area
after an edge contraction is the union of the 1-ring
area of the 2 end points. Therefore we find a localized
way to calculate the L_ error of an edge contraction
and use this error as the contraction cost.

1) Distance from a point to a triangle

Given a point v and a triangle v,v,v, in 3-D
Euclidean space (see Fig.4(a)), let v’ be the projection
of v on the triangle, n be the normal vector of the
triangle, d be the signed distance between v and v’,
then v’ can be written as

v =v +dn ®)
Because v’ is on the triangle v v,v,, we can get

vi=v+dn=av, +bv, +cv, ©)

a+b+c=1 (10)

Eq.(9) has three scalar equations, together with Eq.
(10), the values of d, a, b, ¢ can be calculated.
According to the values of a, b and ¢, the distance
from v to the triangle D, can be computed as follows:
@ a=0, b=0, ¢=0 (see Fig.4(a)), D, = | d|;
(@ There is one value less than 0, say a <0 (see
Fig.4 (b)), D, =V d* + [v'v"|?;

3 There are two values less than 0, say a <0, ¢

(c)

Fig.4 Distance from a point to a triangle

<0 (see Fig.4(c)), D, =/d* + [v'v, |*.

2) Cost of an edge contraction

Let V, be all sample points belonging to the 1-
ring triangles of v; and v;, F; be the 1-ring triangles of
the target vertex v', then the cost of edge contraction
of edge v,v; is as follows:

¢y =max (min(D, (v, 7)) | an

where D, (v, T) is the distance from a point v to a
triangle 7.

1.4 Repeating operations

When all candidates have been sorted into a
queue keyed on the cost with the minimum cost pair
at the top, we can start to repeatedly contract the
candidate pairs until the desired approximation is
reached. After each contraction, two operations must
be done, which are the recalculation of the cost of
pairs involving modified area and the redistribution of
sample points.

1.4.1 Recalculating contraction cost

An edge contraction will delete and modify
several triangles. The costs and consistencies of some
candidates are changed. Therefore recomputing the
costs and the consistencies must be done as well as
the resorting of those modified candidates. Most
algorithms suggest that only the 1-ring edges of the
target vertex v need to be recalculated. However, from
experiments, we find that this is not strong enough to
prevent the folding over of triangles. At least 2-ring
neighboring edges should be recalculated.

1.4.2 Redistribution sample points

Each contraction will delete one or two triangles
and modify several other triangles. If we do not
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redistribute those sample points belonging to these
triangles, the information of the original mesh will be
lost. Therefore, redistribution of sample points can
ensure that each contraction is recomputed using the
information of the original model. The operation of
redistribution is carried on while computing the costs
of contractions:

1) Collect all sample points belonging to the
union of the 1-ring triangles of v.v..

2) According to the values of a, b, ¢ (section
1.3.2):

@ If a=0, b=0, ¢=0 (see Fig.4(a)), assign the
sample point to this triangle only;

() If there is one value less than 0, say a <0 (see
Fig.4(b)), assign the sample point to the neighboring
triangles of this edge;

@ If there are two values less than 0, say a <0, ¢
<0 (see Fig.4(c)), assign the sample point to the
neighboring triangles of this vertex.

2 Multiresolution Model

After finishing the sampling process, we can
create the MRM for meshes. Data structures for
multiresolution meshes must represent, either
explicitly or implicitly, the modifications and the
dependency relations between these modifications. For
this purpose, data structures of MRM are usually
organized into encoding modifications and encoding
dependency relations. Our method encodes the
modifications not as the new generated vertices, but as
real modification. And based on that, we encode the
dependency relations as relations between these
modifications.

2.1 Encoding modifications

Encoding of modifications should provide
sufficient information to perform the tasks of refining
and coarsening mesh, which are necessary to the
implemention of multiresolution mesh.

For a modification m which is based on edge

contraction, our data structure is designed as follows:
struct Modification {
Vertex " vertex[ 2 ];
float DeltaPosition] [ 3 ];

float DeltaPosition2[ 3 ] ;
Triangle” pModifiedTriangle;
byte Pivot;

Triangle” pDeadTriangle;

Modification” pPreModifications;
Modification” pPostModifications;
byte bSplit;

float error;

}
All pre-modifications of m are generated before

m during the initial downsampling process. All
modifications are generated in the order of global
error with the smallest being generated first. Therefore,
if m satisfies the error specification, so do all its
ancestors. Procedure contraction mesh is defined
analogously.

2.2 Encoding dependency

Encoding dependency is more complicated than
encoding modification. A robust dependency relation
should ensure that all triangles that appeared while an
MRM mesh was changing its resolution are among
those triangles that appeared during the original sim-
plification sequence. This can further prevent unex-
pected mesh from appearing, which may have such
flaws as slim triangles and fold-up triangles.

Our dependency relations are defined on edge
contraction. And its base rule is that a vertex v can be
split only if all its adjacent vertices have been split if
they have a split. Fig.5 shows a sequence of edge col-
lapse of a mesh. During the simplifying of mesh, the
dependency relations are generated. Each vertex is at-
tached a split operation, if it is an original vertex, its
value is null. First, edge 11-12 is collapsed. And a
split operation S, is generated and attached to the tar-
get vertex 11. Vertex 12 is inactivated. Since the adja-
cent vertices of the new vertex 11 are all original ver-
tices, no dependency relations generated. Second, edge
4-5 is collapsed, a split operation S, is generated and
attached to the target vertex 4. Vertex 5 is inactivated.
This time, since vertex 11 is adjacent to vertex 4, the
split operation S, is therefore dependent on split oper-
ation S,. Repeating this procedure until the simplifica-
tion is over and all dependency relations are created.

Fig.5 Evolution of a mesh through a sequence of edge collapsed
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We find that the dependency relations are a
directed graph (see Fig.6). In this way, all splits are
sorted in partial order. Therefore, topological sorting
can be used to deduce the dependent sequence of
splits operation of a split. For example, the dependent
sequence of S, is S;—S,—S;—S,—S,. Of course,
more than one sequence is right, S;— S, —S,—S§,—
S, is also an appropriate choice. Our method can
capture all dependency relations of the MRM. Thus
can ensure the robustness of resulted multiresolution

mesh.

Fig.6 Directed graph of dependency relations

3 Results

We tested our algorithm using many models, two
of which are the famous bunny from Stanford
University and an oil pump model. The bunny is
selected because it contains several regions with
boundaries on its underside, so that we can test our
method’s effectivity when dealing with boundaries.

3.1 Multiresolution

Multiresolution ~ mesh  can  be  realized
straightforwardly using our method. Our MRM mesh is
composed of a base mesh and a sequence of splits. All
these splits are sorted so that the modification to the
model during the change of resolution can be done in
the smoothest way. The current level of the model is
represented as i, which means that the first i splits
have been executed. Fig.7 shows the result of the
bunny. Fig.7(a) is the model at 5% of full resolution
with the maximum error of 5. 580 x 10 *, Fig.7(b) is
the model at 30% of full resolution with the maximum
error of 1.174 x10 | Fig.7(c) is the full resolution
model.

3.2 Selective refinement

Selective refinement is widely used in many
applications, such as view-dependent refinement. The
algorithm of selective refinement is also based on the
algorithm of multiresolution. During the generating of
MRM, each split is attached a box value, which is the
outer bound box of the 1-ring area of the target

(b)

()
Fig.7 Multiresolution model of bunny

vertex. When executing selective refinement, all splits
that fall into the select area are executed. The
important thing is that if a split is going to be
executed, its dependent splits should be executed first.
Fig.8 shows the selective refinement results of the oil
pump head. Fig.8 (a) is the model at 50% of full
resolution with the maximum error of 4.749 x 10,
Fig.8(b) is the selective refinement of pump, Fig.8(c)
is the full resolution model.

(e)
Fig.8 Multiresolution model of oil pump
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4 Conclusion

We have introduced an efficient framework for
generating an MRM of arbitrary meshes without the
requiring of subdivision connectivity. A new mesh
simplification algorithm based on global error control
is used as sampling method. The MRM is composed of
a base mesh plus a sequence of edge split operations,
which are organized as a directed graph and sorted in
the smoothest way. Each split operation encodes two
parts of information, the modification to the mesh and
the dependency relations between these splits. Using
this MRM representing can easily realize the refining,
coarsening and selective refining of arbitrary meshes.

Possible future research includes: (D Memory
management for large scale models; 2 Color and
texture MRM; @ Error control in selective refinement
for mechanical utilization.
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