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Adaptive Volterra series model for nonlinear sensor compensation
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Abstract: A novel performance enhancement method of nonlinear sensor based on the Volterra series model is
proposed. The Volterra series model, which is considered a nonlinear filter that can reduce sensor noise,
presents an effective way for modeling and compensating a nonlinear sensor. In the experiment, the low
accuracy pressure sensor MPX10 was used as the actual object, and higher accuracy sensor MPX2010 was
used as the reference to provide the necessary teaching data for training the Volterra model. The simulation
shows that the accuracy of MPX10 changes from 0.354 —0.42 to 0.041 —0.053 after the Volterra filter has
been applied. Obviously this scheme can effectively improve the sensor performance. Moreover, the scheme
provides greater accuracy and environmental suitability for a nonlinear sensor.
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In modern applications, greater demands are
made on sensor performances. Unfortunately, sensors
inherently suffer from imperfections, such as non-
linearity, cross-sensitivity, crosstalk, noise, etc.
Improving sensor performance via better materials,
new technologies and advanced design is generally
expensive and limited. Another solution is the so-
called “soft or intelligent” sensor design. Monitored
correction  ( sensor-within-sensor ) and tailored
correction (using multi-dimensional look-up-tables for
each sensor) are the main conventional solutions.
However, there are several major drawbacks to these
methods'"’. Another widely used approach is to use
compensating algorithms. In this approach, the sensor
output is modeled using polynomial fitting techniques.
The memory requirements are dramatically reduced
because only the polynomial coefficients need to be
stored. It has been found that such an approach is
incapable of producing the required performance
accuracy even when using high order polynomials. In
an attempt to find a compromise between the memory
requirements of the look-up table approach and poor
accuracy for the polynomial fitting method'"?’. This
paper presents a novel approach for intelligent sensor
design based on the Volterra series model.

1 Basics of the Volterra Series Model

The Volterra series model is an exact
mathematical approach for description of causal time-
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invariant systems, where dynamic and nonlinear
phenomena are presented simultaneously. According
to this model, the output signal of the nonlinear
system or sensor can be expressed as a series of
Volterra functions, i.e., by means of a series of multi-
dimensional convolution integrals[z‘ i
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where x (¢) is the input signal, y (¢) is the output
signal, and h;,(7,, 7,, **
of the i-th order.

The discrete equivalent of the general formula
(3]
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where x(n) is the discrete input signal, y (n) is the

, 7;) is the Volterra kernel

is

output sequence, and h;,, . .., is the element of the
i-th order Volterra kernel. Eq.(2) is the mathematical
model of a Volterra series of infinite orders. In
particular, the truncated model with a finite order M,
and a finite memory of samples N +1 is considered.
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It is sufficient for the purpose here to consider
the second-order Volterra model with finite memory N

in Eq.(3).
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The optimization problem is to minimize the
following cost function:
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where e(n) is defined as
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And, the forgetting factor A chosen here has the
following constraint:

0<A<lI )

The forgetting factor A ensures that the data in
the distant past are forgotten, in order to allow the
possibility of tracking statistical variations in the
observable data, especially when the signal to be
modeled in nonstationary.

Using the steepest decent rule, the Volterra kernel
neurons are updated by Egs.(8) to (14)[4’6].
dh()d (t n) ®)

where y is the step size parameter. Simplifying, the

ho(n+1) =hy(n) +u

gradient is updated using
dh, dh,
(W) =A(m) " 2n=1) +2e(n) ©)
And,
dh, (n)

dt
The gradient can be updated using

hi(n+1) =h(n) +p (10)
dh, B dh,
E(n) =A(n) 4 (n=-1) +2x(n)e(n) (1)
And,
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Using a recursion rule, the gradient at the (n + 1)-th

hy(n+1) =h,(n) +u

instant can be updated using

dh, B % N
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(13)
The forgetting factor A is updated according to
A(n+l)=A(n)+Mg%%Q* (14)

2 Nonlinear Sensor Compensation Based on
Volterra Series Model

We consider the output of sensor as the input
signal corrupted by the sensor’s noises, and a way to
improve the accuracy is to employ an adaptive filter
to reduce the sensor’s noises. Based on this idea, our

sensor performance or accuracy enhancement scheme
is illustrated in Fig. 1. The Volterra series model
connects to the sensor in the series. The Volterra
series model is employed to filter the noise from the
original sensor. Referring to Fig.1, x(n) and y(n)
represent the applied normalized sensor input and
measured output, respectively. y (n) is used as the
input to the Volterra series model which generates an
output y(n). If the Volterra series model is properly
trained, y (n) represents an accurate estimate of the
applied sensor input. After sufficient training, the
estimated outputs should become more and more
accurate.

4' High accuracy sensor
x(n)
—

y(n)

Volterra series model

Fig.1 Learning procedure of Volterra series model

As this learning proceeds, the error £ (mean-
square-error, MSE) progressively decreases and finally
attains a minimum value. At this stage the Volterra
series model becomes an ideal adaptive filter that can
reduce the applied sensor’s noise and enhance the
performance or the accuracy of the sensor. This allows
the nonlinear sensor error to be corrected according to
the model, as shown in Fig.2.
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Fig.2 Principle of error to be corrected by Volterra series
model

3 Simulation and Conclusion

In the simulation below, a second-order Volterra
series model is chosen in sensor accuracy
enhancement. It is observed that an MSE level of
about —90 dB is attained at 2000 iterations in 300 to
350 ms with a learning rate constant of 0. 21.
Achievement of such a low value of MSE ensures that
the output y (¢) is an accurate estimate of the high
accuracy sensor’s output. In the experiment, the low
accuracy pressure sensor MPX10, which is fabricated
by Motorola Co., is considered as the actual object.
Another higher accuracy sensor MPX2010 is used as
the reference to provide the necessary teaching data.
The precision of the sensor can be defined by the ratio
of the maximum error to full scale value as follows:

max |y, -y |

=, 1>
where y,, y and Y, are the measure value of the

sensor, arithmetic mean value of the measure value,
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and the full scale value, respectively. Through our
experiments, we know that the original precisions 6 of
MPX10 and MPX2010 are about 0.354 - 0.42 and
0.032 —0.043, respectively. The Volterra series model
will gradually learn to reduce the sensor noise and this
step is performed offline. Finally, according to the
scheme of Fig.2, the precision of MPX10 is enhanced
to 0.041 —0.053 after Volterra series model filtering.
The experimental results are shown in Fig.3, where the
curve “ + 7 denotes the precise behavior change of
MPX10. Accordingly, we can conclude that the
effective accuracy of the sensor is increased.
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Fig.3 Dynamic behavior of sensor precision

This paper presents a new approach to sensor
accuracy enhancement. It is believed that this scheme
can be of great value, when applied to the sensors in
practical control and measurement systems, because
no extra hardware cost is needed. However, the
computation burden will increase drastically. This tech-

nique will be useful for other types of sensors
possessing similar nonlinear response characteristics.
It has a potential future in the field of instrumentation
and measurement.
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