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Abstract: A finite element model is presented for free-damped beam-stiffened plates. The nodes of the plate
elements are treated as master-nodes, and the corresponding nodes of the beam elements are considered as
slave-nodes. The stiffness and mass matrices of the elements are developed. Based on the analysis of the
dynamic properties of the structures, modal loss factors are predicted by the modal strain energy method.
Finally, an example is given to compare the results obtained from the proposed method with the results of the
ANSYS software. The results show that the method in this paper is computationally efficient, simple and
feasible with high precision and engineering practicability.
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The structures of beam-stiffened plates have the
characteristics of high stiffness and light weight
(saving materials), so they are widely used in the
mechanical structures of machine tools, ships, planes,
etc. The problem of controlling the noise and vibration
of mechanical structures is very important. An
effective way to solve the problem is to use the
technique of surface damping treatment' ', This
technique can effectively restrain the resonance of
structures by increasing the structure damping and has
been broadly used in engineering. Free-damping
treatment is one kind of surface damping treatment
and can be used conveniently and economically. The
finite element method is one of the important
theoretical analysis methods used to analyze the
surface-damping-treated  structures.  This  paper
proposes a method to establish a finite element model
for the free-damped beam-stiffened plates using an
integral-dividing method 2%,
examples show that the method can provide accurate
estimates of the dynamic properties of the structures.

element Numerical

1 Modeling of the Finite Element

Ref. [6] indicated that, when we set up a finite
element model for the beam-stiffened plates, there
should be both plate and beam elements with strict at-
tention paid to guaranteeing the compatibility of the
displacements at the nodes of the beam and plate
elements. Here the nodes of the plates are treated as
master-nodes, and the nodes of the beams are
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considered as slave-nodes whose serial-numbers are
dependent on the corresponding master nodes. The
calculation scale is dependent on the quantities of the
plate elements. The following is the modeling
procedure. First, the free-damped plate element model
is developed without regard to the beams, and the
stiffness matrix is discussed. Secondly, the stiffness
matrix of the beam element is properly transformed to
combine with that of the plate element. Thirdly, the
mass matrix is set up.

1.1 Basic assumption

It is assumed that each layer has the same
transverse displacement as has been proved both
experimentally and numericallym, and that the
deformation of each layer obeys thin plate theory.

1.2 Shape function and variables of the free-
damped plate element

As shown in Fig.1, the free-damped plate element
is rectangular with four nodes at each corner point. At
each node, seven displacements are introduced. These
are the transverse displacement w, the two rotations 6,

_dw and 6, = —aﬂ, the in-plane extensional displace-
dy J ox

ments of the base-plate-layer u,, v,, and the in-plane
extensional displacements of the damping-layer u,, v,.
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Fig.1 Definition of variables of free-damped plate element
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The displacements u,, v, and u,, v, are on the neutral
surface of the base-plate and the damping-layer, re-
spectively, and u, , v, have relations with u, and v,, so
they are not included in the node degrees-of-freedom.
Therefore the displacement vector of each node can be
written as | = n=i,j, k,I,
and the complete set of 20 nodal displacements of the
element is 8° = {8/, 8/, 6,, 8, .

We introduce ofn coordinate system shown in
Fig.2 to simplify the process. The length of the two
edges of the rectangular are 2a and 2b, and the two
edges are parallel to x and y coordinate axes,
respectively. The coordinates (x, y) which refer to the
location of a certain point in the rectangular may be
expressed as

x=xy+af, y=y, +bn
where (x,, y,) are the coordinates of the point o.
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Fig.2 oén coordinate system

Suppose the displacements interpolation and we

obtain
u, =U&8 = Z N, u,,
n=i,j, k,1
v, = V8 = 2 N,v,,
n=i,j, k,1 (1)
w = Wae = Wnan =
n=i,j, k,1
W w + WWIOWL + W}n H)n
n=i,j, k, 1
where
1
N =
AL +&,) (1 +mm,)
,: {0 O Wn ’ th ’ W)n}
W - (1+&,) (1 +m,) (2+&, +m, € -71°)
- 8
by, (1 +&£,) (1 +mm,) (1 -7°)
W«'k” = - 8
Cag, (1+&,)(1+m,) (1-£)
yn — 8

1.3 Formulation of the stiffness matrix of the free-
damped plate element K*

Ke = Kﬂex + K?xt

The bending stiffness matrices of each layer can

be obtained from the bending strain energies of the
element.

E.h} ab [LQZT
4

flexi — 12(1 -l ) a 2
1 9W aW  w (W aZW“ FPW
4 2 2 + 2 2( 2 2 2 )+
bt amt oan®  d°b°\ 98 am S
2(1 —pw) W' W
- 2
JEFR) aEIm 8«fan]d§dn @)

where E, is the elasticity modulus and u, is the
Poisson’ s ratio (i =1, 2 denotes the base-plate-layer
and the damping-layer, respectively). Then K, =
K. A +K,,.

The extensional stiffness matrices of each layer
can be obtained from the extensional strain energies
of the element.
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where U, and V, have already been obtained in (1),
and U, and V, can be obtained below.
The relation between u, and u, shown in Fig.3

flex1

can be expressed as

h, +h ow
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Fig.3 Relation between u, and u,
A similar relation exists for v, and v, :
hy +h, gw
v, =V, — — )
2 2 oy
Consequently we can obtain
u, =U,6° = {U,, U2j7 U,, U2,§5P’} ©)
0, =V,6°=1{V,, sz9 Vs Vzl}a
where
UZII = {N}l b O ’ e_l ﬂ 61 aWt" b - 61 aW’”l}
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where n=1, j, k, l; e, =(h, +h,)/2. Thus K_, =

Kextl + Kextz
1.4 Stiffness matrix of the beam element

The coordinate systems x,y,z; and x'y'z’ are the
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local coordinate systems of the beam and the plate,
respectively, which are shown in Fig. 4 ( The
viscoelastic damping-layer is not shown in Fig.4 for
explicitness. The damping-layer and the beams should
be on the opposite side of the plate). The two nodes of
the beam elements i, and j, are slave nodes that have
four displacements. They are u;, w;, 6,, 6,. The
corresponding master nodes are ¢ and j from the plate
element. The displacement vector of the slave node of
the beam is expressed as

8 =185, 651 @)
where 5; = {uy, wy, O, m} 531 “‘3/’ wy, O,
6,51

A
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Fig.4 Master nodes and slave nodes

As can be seen in Fig.4, w, =w, 0, =6,, 6; =
0,, uy =u, +hy6,, where h, is the distance from the
center of the cross-section of the beam to the neutral
surface of the plate. The relation between the
displacement vector of a slave node of the beam &,,
and that of the corresponding master node of the plate
6, can be written as

85, =70, n=i,j
where
1 0 0 0 h
A= 001 0 O @®)
00 01 O
0 0 0 0 1
Thus we can obtain
P I T o
0,5 A 0,5 0,
According to the coordinate transforming

formula'®’ of the stiffness matrix of the element, the
relation between K3 and K'5 is as follows:
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where K is the stiffness matrix of the beam element in
its own coordinate system x;y,z;, and K'°, is the
stiffness matrix of the beam element transformed to
the plate coordinate system x'y’z’. What needed to be
done, when the whole stiffness matrix was assembled,
is to impose K5 to the stiffness matrix of the
corresponding plate element.

1.5 Mass matrix M°

The mass matrix M° can be obtained from the
kinetic energy of the element. It should be noted that
rotary inertia has been omitted from the kinetic energy
because earlier study[“] has shown that it has little
influence on the results and the mass of the beams are
also ignored here because they occupy a very small
percentage of the whole mass. The mass matrix of the
plate element is

M = L[mlUlTUl +m,V,"V, + m,U,"U, +

m,V,"V, + (m, + m,) W'W]abdédn (11)
where m,(i =1, 2) is the mass per unit area of each
layer.

2 Calculation of Modal Loss Factors'*’

The modal loss factor is a very important
parameter to indicate the ability of the structures to
consume the vibration energy. Here, based on the
analysis results of the dynamic properties of the
structures, modal loss factors are predicted by the
modal strain energy method. The expression of the
modal loss factor 7, is

BZ (UI’ TKPUP

U'KU,
where g3 is the loss factor of the viscoelastic damping
material, U” is the r-th mode shape vector of the p-th
element, U, is the r-th mode shape vector, K is the

U 12)

total stiffness matrix of the whole structures, K/, is the
damping part of the stiffness matrix of the p-th
element, here K, = K;,., + K, ,, 1, is the modal loss
factor of the r-th mode, and P is the total number of

the plate element.
3 Numerical Example

A rectangular beam-stiffened plate shown in
Fig.5 is analyzed. The boundary condition is taken as
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clamped at one edge. The base-plate and the beams
are of the same material. The geometrical and physical
parameters are both shown in Fig.5 and as follows: E|
=210 GPa, p, =7. 8 x 10’ kg/m’, u, =0. 3, h, =
0. 01 m (the thickness of the base-plate), b =0.01 m
(the width of beams), h =0.01 m (the thickness of the
beams). The parameters of the viscoelastic damping
material layer are: £, =499.2 MPa, h, =0.01 m, p, =
1. 05 x10° kg/m’, u, =0. 3, B=0. 5. The computed
first-five-order frequencies of the structure with the
finite element model in this paper are compared with
the results obtained by using ANSYS. The results are
listed in Tab.1. The modal loss factors are predicted
by the modal strain energy method.
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Fig.5 Free-damped beam-stiffened cantilever-plate(unit:mm)

Tab.1 Results comparison

No. of Frequency f/Hz Modal loss
mode ANSYS Proposed method factor
1 7.044 7.052 0.031 90
2 17.540 17.68 0.034 12
3 44.053 44.82 0.034 65
4 56.133 57.29 0.03491
5 63.704 65.10 0.035 00

It can be seen from Tab.1 that the results ob-
tained with the two methods coincide fairly well. This
illustrates that the modeling method here is suitable

for analyzing the vibration characteristics of free-
damped beam-stiffened plates.

4 Conclusion

The modeling method here is suitable for both
free-damped and sandwich beam-stiffened plates, and
it is much more convenient to predict the modal loss
factors based on the analysis results of the dynamic
properties of the structures using modal strain energy
method. Although the free-damped plate element here
is rectangular, it still can be applied to the plates with
irregular boundaries by using the rectangular plate
elements for the inner area and some free-damped
triangular elements for the region around the outer
edges. The modeling of the triangular elements for
free-damped plates will be discussed later.
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