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Three methods for generating monotonic OWA operator weights
with given orness level
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Abstract: Based on the properties of ordered weighted averaging (OWA) operator and regular increasing
monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed.
They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM
quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the
methods proposed in this paper are more intuitive and efficient in computation. And as there are more than
one solution in most cases, the decision maker can set some initial condition and chooses the appropriate
solution in the real decision process, which increases the flexibility of decision making to some extent. All
these three OWA methods for generating weights are illustrated by numerical examples.
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The ordered weighted averaging ( OWA)
operators introduced by Yagerm have attracted much
interest among researchers. Yager’” proposed orness
measures of the weights vector. It is clear that the
actual type of aggregation performed by an OWA
operator depends upon the form of the weights
vector **'. A number of approaches have been
suggested for obtaining the associated weights, i.e.,
quantifier guided aggregation:1’4‘5:, exponential
smoothingm, learningm and goal programming[s].
Hagan proposed a method to generate weights with a
given orness level *. The problem is formulated as a
nonlinear constraint program problem with maximum
entropy procedure. The weights vector is called
maximum entropy OWA (MEOWA) weights. Filev and
Yager“"m, Fullér and Majlender[”] further analyzed
the properties of MEOWA operator and proposed the
corresponding methods to get it. Recently, Liu and
Chen extended the MEOWA operator to a more
generic form and proposed an alternative method to
get its weights'?’.

In this paper, a class of OWA operators with
monotonic weights is proposed, which means the
weights change with the change of elements to be
aggregated in the same or reverse order direction. The
direct meaning of the monotonic OWA weights is that
it reflects the decision maker’s consistent preferences
to the value of the aggregated elements: the bigger,
the more important, or the smaller, the more important.
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Especially, two classes of monotonic OWA operators
called equidifferent OWA operator and geometric
OWA operator are researched. The former with
weights composed of an arithmetic progression and 0Os
and the latter with weights with a fixed ratio. The
methods for getting monotonic OWA weights with
given orness degree with geometric and equidifferent
OWA operator are proposed, respectively. In view of
the close relationship between OWA operator and
fuzzy quantifier, an intuition method of generating
monotonic OWA weights with an RIM fuzzy quantifier
is also proposed.

1 Some Properties of OWA Operator

An OWA operator''' of dimension n is a
mapping F': R"—R that has an associated weighting

vector W = {w,, w,, -+, w,| with the following
properties:
w, +w, +-+w, =1, 0sw; <1

j: 1, 2, .", n
and such that

n
F(x17 x29 T, xn) = zw/yl
j=1

with y, being the j-th largest of «x;,. Denote this
expression as Fy,(X), where X = {«x,, x,, -+, «,1}.
The degree of “orness” associated with this

operator is defined as

n

orness (W) = ; :__{wj (1)
The min, max and average correspond to W*, W _ and
W,, respectively, where W* = {1, 0, ---, 01", W, =

{0, 0, «, 1t", W, = {1/n, U/n, -, 1/n}".
Obviously, orness (W™ ) =1, and orness(W,) =1,
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and orness (W, ) = 1/2. The orness measure has the
following property“i .

Proposition 1  Let W= {w,, w,, -, w,| be
the weight of an OWA operator with
orness( W) =a. Then for the reverse order of W, W’

vector
w -, w, |, omess(W') =1 -q.

In what follows, we will focus on a special class
of OWA operators with monotonic weights. Some
properties are listed. We will use these properties to
get monotonic OWA weights. Their detailed
explanations can be seen in Ref. [12].

Theorem 1>’ For OWA weights W = | w,,
wy, ey w, |, W= lw!, wh, e
w/w’,,withi=1,2, ---, n—1, then orness( W) =
( >)orness(W') and for VX = {x,, x,, -+, %, 1,
Fu(X)=Fy(X).

Theorem 2'>"  For OWA weights W = |w,,

’r_ ' '
Wy, *°°, W,,%y w _{wl’ Wy, ***

:%wn’ n-1s "

’ .
’ wn}7 lfwi/u}i+l =

f .
, wn}alf“’i_wiﬂ

=w, - w),,, with i =1, 2, ---, n -1, then

orness( W) = orness (W') and for VX = {x,, x,,
) xn}’ FW(X) 2F‘W'(‘X)'

2  Generating of Geometric OWA Operator
Weights

From theorem 1, in order to increase or decrease
the orness degree of an OWA operator, the quotient of
the adjacent weights should be increased or decreased.
A geometric OWA operator is OWA operator that the
weights have a geometric property with fixed ratio ¢
for adjacent weights, that is ¢ =,/ w, .
A geometric OWA operator can be expressed as
it a>0, g= 0 )

w; =aq

Considering that Y w, = 1, then
n=1

i-1

w = 5 @)
> q
j=0
n-1 .
W) = Rl =
orness (W) ;n—l’

n-1 n-2
. (n-1i)qg"" Z(n—l -1)q
=1 — ' — i=0 — ' (4)
(n-1)Y¢ (n-1)%¢
j=0 j=0
With given n and orness( W) =q, ¢ is the root of the
solution of Eq.(5) which is transformed from Eq.(4).

(n-1)ag"™" - Z((n—l)a—i+l)q"—i =0
=

®)
The process of generating geometric OWA
weights W with a given orness degree « can be

summarized as follows:

Algorithm 1

Casel Ifa=0ora=1,set W=W" or W=
W, directly.

Case2 If ae (0, 1), D Determine ¢ with

Eq.(5); @ Determine w, with Eq.(3).

Example 1  Generate MEOWA weights W =
{w,, w,, wy| with orness( W) =1/3. From Eq. (5),
2¢° —q-4=0,q9=(/33+1)/4; from Eq.(3), it can
be obtained

W:{l_/ﬁ 1, /33

2 7183 9

3 Generating of Equidifferent OWA Oper-
ator Weights

Similar to the geometric OWA operator, from
theorem 2, in order to increase or decrease the orness
degree of an OWA operator, we can also increase or
decrease the difference of the adjacent weights. An
equidifferent OWA operator is a class of monotonic
OWA operator with weights that is composed of a
series of nonnegative equidifferent real numbers and
0s. By setting the difference value between the
adjacent weights, the OWA operator weights with
different orness levels can be calculated.

Equidifferent OWA operator weights W = {w,,

i_ \/ﬁ}
) 18

w,, -+, w,} can be expressed as
_[a+(i-1)d a+(i-1)d=0 ©)
wi_{O otherwise

with i w, =1.
i=1

If an equidifferent OWA operator has m

nonnegative equidifferent elements, it can be
expressed as the following two cases:
1) When d<0,
={a+(i—1)d I<ism )
10 m+l<isn
2) When d =0,
0 Isisn-m
wi:{a—(n—i)d n-m+l<i<n ®)

where a >0.

It is obvious that the two forms of equidifferent
OWA operator weights have reversed order. When the
weighting vector has only one nonzero element, it can
also be regarded as equidifferent combined with 0, we
can always assume that n= m= 2.

In the following we will first consider the case of

Eq.(7) with d<0. To keep » w, =1 ,and w, =0 (i =
i=1

1,2, -, n), from Eq.(7), a and d should satisfy the
following conditions:
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m

Y (a+(i-1)d) =1 ©9)
i=1
a+(m-1)d =0 (10)
then
2
:2+dm—dm an
2m
2
><d=<0 (12)
m-m

With Eq.(11), orness(W) can be calculated as
12n -6 —6m +dm — dm’

12(n-1) (13)
From Eq. (13), when n and m are specified,

orness( W) =

orness( W) is monotone decreasing with d, which

means that when d changes from 2 > to O,

m-m
3n-m-1 2n-m -1

h fi .

orness( W) changes from 3(n-1) to 2n-1)

Here another question arises, when m and d change,
can orness ( W) spread on [1/2, 1)? If it is true,
considering Eq. (8) and proposition 1, for any given
orness level 2 e [0, 1], we can always find an
equidifferent OWA operator W, which makes
orness( W) =42. We will check it in the following.
For the interval series
2n-m-1 3n-m-1
D, =[ 2(n-1) " 3(n-1) ]

m=2,3,

_[2n-k-1
D, = 2(n-1)"
2n—k—3 3n-k-271 D
2(n-1)"3(n-1) 1> > 7

where D, = 2n 3 1]

3n-k-1
3(n-1) ]sDkn:
1 2n-1
27 3(n-1)
3n-k-2 2n-k-1_ k-1
3(n=1) 2(n-1) 6(n-1)
each other, and cover the half unit interval [1/2, 1].

] D,., is on the left side of D,, and

> 0. They intersect

So for any 2 [1/2, 1], there will exist at least one

equidifferent OWA operator W, which makes
orness( W) :Q m can be determined with
2n—-m — \{2\ -m-1
2(n-1) 3(n—1) (14)
2<m<n
From Eq.(13), d can also be determined.
d:6(2n—m—12—2nﬂ+2{2) (15)
m(m”~ -1)

The process to generate equidifferent OWA
operator weights W with a given orness level (2 can be
summarized as follows:

Algorithm 2

Casel IfQe[1/2, 1], D Determine m with
Eq.(14); @ Determine d with Eq. (15); 3 Generate
OWA weights from Egs.(11) and (7).

Case2 If0e[0, 1/2], from proposition 1, we

can firstly get equidifferent OWA operator weights W

with orness ( ﬁ’) =1 - (), reverse the order of W, we
can get W we wanted.

Example 2  Determine the equidifferent OWA
operator weights W = {w,, w,, -, w, | with
orness( W) =7/9.

From Eq.(14), we can get 5<m <8, m can be set
as5, 6,7, 8.

1) When m =5, d =0, a =1/5,

1 1 1 1
W= {5,5,5,5,5,00000}
2) When m=6,d = -1/35, a=5/21,

5 2 19 16 13 2
W_{Zl’ 105’ 1057 105 105 21° 0,0,9, O}
3) When m=7,d= -1/28, a =1/4,

1 3 5 1 3 1 1
W_{4 147287 7728’ 14’ 28’ 0,0, 0}
4) When m =8,d = -1/28, a=1/4,

1 3 5 1 3 1 1

W_{4’ 14728 7728 14’ 28’0 0, 0}

From the above discussion, it can be seen that for
a given orness level «, there will often exist more than

one m, which satisfy 22n<_ m 1‘>1 <a g33”(_ m 1—)1.
n — n—

4 Generating of Operator Weight with Fuzzy
Quantifier

The OWA operator weight vector was associated
with fuzzy quantifier at the very beginning'"*>"~'%/,
Yagerm proposed an OWA aggregation method with
RIM quantifier and extended the orness measure of
OWA operator to the RIM quantifier.

Given a linguistic quantifier (), we can generate

l l

the OWA weights by w, = Q(;) - Q(

_1), then we
n

can associate with this quantifier a degree of orness as

orness(Q) = ; Z:i (Q(%)—Q(irzl)), that is
orness( Q) :nlj "zj Q(i) Let n— o0, then
orness(Q) = J:Q(r)dr (16)

Thus the orness degree of an RIM linguistic
quantifier is equal to the area under it.

In fact, when n is very large, in order to generate
OWA weights with given orness level «, an RIM
quantifier (x) with orness ( ) = « should be
generated firstly, then the required OWA weights can
be gotten from () approximately. But in general, when
n is not large enough, the generated OWA weights
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will not be the required even in an approximate way
and we cannot guarantee that the weights are
monotonic.

It is obvious that ¢ =0, a =1, @ = 1/2 correspond
to the unique OWA weight vector W_, W" and w,,

respectively. From proposition 1 we only need to
consider that a € (0, 1/2), and for a e (1/2, 1) we
only need to get the weights for 1 — « and reverse the
order of them.

Here is an algorithm on how to generate the
monotonic OWA weights with given orness degree o
(172, 1). The main idea is to randomly generate
monotonic increasing OWA weights W= {w, , w,, -,
w,} (w= w,= = w,). If its orness degree o' is
greater than the given value «, decrease w, with
appropriate ratio o/’ except w, ; if o’ is smaller than q,
which means that the relative difference of w,’s is too

big, add a positive real number to all w,, then decrease

n

w; with an appropriate ratio to make z w, =1.

i=1
Algorithm 3
(D Randomly generate n + 1 nonnegative real
number p,, with increasing order that is p, —p,_, >0,
(t=1,2, -+, n),and p, =0;

i

2 Calculate q;, = 2 Pi, ;i = q/q, and o'

j=1
n-1

= Z s/(n=-1) (=0, 1, ---, n), respectively;
i=1

@ If o' =a, goto @), otherwise goto (©);
@ Calculate s =s,a(i =0, 2, ===, n—1), where
a=a/a’,and s’ =5, ;
® Calculate w, =s', —s/_,, end;
n-1

© Let s', =, +ir, solve z s'/s/(n-1) =a
i=1

for r;

@ Calculate w, = (s’ —s"_,)/s’,, end.

Example 3  Generate monotonic OWA weights
W={w,, w,, wy, w,{ with orness( W) =3/10. The
solution process is as follows:

(D Randomly generate p, which is increasing as P
=1{0,2,3,4,5};

@ Calculate Q@ = {0,2,5,9,14 | withg,

Zp:"i:051a29334;

j=0
®5i =q/q, (i =0, 1,2,3,4), 8§
1 5 9

{0’ 7’14’ 14’ ]‘}’
@Asa'=%(31+52+33)=

1,5,9y.8.3 3,8 63
(7 14 14)‘21 104710 21 ~80°

1
3

® Calculate s, =s,o (i =1, 2, 3) and s/, =s,,
Cfp 9 9 8L .
get 5 _{0’ 80° 32”160’ 1}’
@ Calculate w;, = S,i
{9 27 9 79}

- s, and get W =

80’ 160° 40’ 160
5 Conclusion

Based on the properties of OWA weights and
RIM quantifier, this paper proposes three OWA
methods for generating weights with the given orness
level. They are geometric OWA operator weights,
equidifferent OWA operator weights and the modified
RIM quantifier OWA weights. Unlike most of the
other OWA methods for generating weights which
give a unique solution, the equidifferent OWA weights
and quantifier methods for generating weights usually
have more than one solution, which make the methods
for generating weights more flexible, and allows the
decision maker to select the solution he/she wants in
real applications.

References

[1] Yager R R. On ordered weighted averaging aggregation
operators in multicriteria decision making [ J]. IEEE
Transactions on Systems, Man and Cybernetics, 1988, 18
(1): 183 — 190.

[2] Yager R R. On the analytic representation of the Leximin
ordering and its application to flexible constraint
propagation [ J 1. European Journal of Operational
Research, 1997,102(1): 176 —192.

[3] Carbonell M, Mas M, Mayor G. On a class of monotonic
extended OWA operators [ A]. In: The Sixth IEEE
International Conference on Fuzzy Systems [ C]. Barcelona,
1997. 1695 — 1700.

[4] Yager R R. Quantifier guided aggregation using OWA
operators [ J]. International Journal of Intelligent Systems,
1996, 11(1): 49 —73.

[5] Yager R R. Families of OWA operators [ J]. Fuzzy Sets
and Systems, 1993, 59(1): 125 — 143.

[6] Filev D, Yager R R. On the issue of obtaining OWA
operator Weights[ J]. Fuzzy Sets and Systems, 1998, 94(2):
157 —169.

[7] Yager R R, Filev D P. Induced ordered weighted averaging
operators [J]. IEEE Transactions on Systems, Man and
Cybernetics, Part B,1999,29(2): 141 —150.

[8] Xu Z S, Da Q L. Approaches to obtaining the weights of
the ordered weighted aggregation operators[ J]. Journal of
Southeast University ( Natural Science Edition ), 2003, 33
(1): 94 —96. (in Chinese)

[9] OHagan M. Aggregating template or rule antecedents in
real-time expert systems with fuzzy set[ AJ. In: Proc 22nd
Annu IEEE Astlomar Conf on Signals, Systems, Computers
[ C]. California, 1988. 681 —689.



Three methods for generating monotonic OWA operator weights with given orness level 373

[10] Filev D, Yager R R. Analytic properties of maximum Reasoning, 2003, 34(2): 221 —239.
entropy OWA operators[ J]. Information Sciences, 1995, [14] Yager R R. On the valuation of alternatives for decision-
85(1): 11 —27. making under uncertainty [ J]. International Journal of
[11] Fullér R, Majlender P. An analytic approach for obtaining Intelligent Systems, 2002, 17(5): 687 —707.
maximal entropy OWA operator weights[ J]. Fuzzy Sets [15] Herrera F, Herrera-Viedma E. Aggregation operators for
and Systems, 2001, 124(1): 53 —57. linguistic weighted information [ J]. IEEE Transactions
[12] Liu X W, Chen L H. On the properties of parametric on Systems, Man and Cybernetics, Part A, 1997, 22(5):
geometric OWA operator [ J ]. International Journal of 646 — 656.
Approximate Reasoning, 2004,35(2): 163 —178. [16] Yager R R, Kacprzyk J. The ordered weighted averaging
[ 13] Herrera-Viedma E, Cordon O, Luque M, et al. A model of operators — theory and applications [ M ]. Kluwer
fuzzy linguistic IRS based on multi-granular linguistic Academic Publishers, 1997.

information [ J]. International Journal of Approximate

8 7E omness JKET
A R B OWA BUERF FI /Y 3 Fh 7 3%

x| 7 Ik

(RAAXF2FFRFR, &% 210096)
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