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Self-similar very singular solution of a p-Laplacian equation
with gradient absorption: existence and uniqueness

Shi Peihu

(Department of Mathematics, Southeast University, Nanjing 210096, China)

Abstract: This paper investigates the self-similar singular solution of the p-Laplacian evolution equation with
the nonlinear gradient absorption terms u, =div( | Vu |2 Vu) - | Vu ! for 1 <p<2and ¢g>1in R" x
(0, o). It has been proved that when 1 <g <p —n/(n +1) there exists a unique self-similar very singular
solution.
Key words: p-Laplacian evolution equation; gradient absorption; self-similar; singular solution; very singular
solution

In this paper we study the self-similar singular solution of the p-Laplacian evolution equation with the
nonlinear gradient absorption terms
w,=div(| Vul"?Vu) - | Vul inR"x (0, ) (1)
where 1 <p <2 and ¢ > 1. In my previous paper''’ the case p >2 has been considered and the self-similar very
singular solution has compact support.
Here by singular solution we mean a nonnegative and nontrivial solution u (x, t) of Eq. (1) which is
continuous in R" x [0, o )\{ (0, 0) | and satisfies

lLr(r)lSlllp u(x, t) =0 Ve>0 @)
A singular solution u(«, t) is called a very singular solution provided that it satisfies

lim u(x, t)dx = o Ve >0 3)

t—0J | x |<e

By self-similar solution we mean that the solution u(«x, ¢) has the following special form:
a aB _ —
u(x’t>=(£) y(‘x‘(g) ) a=2 q"321+q p @)
t t 2q-p P—q
Here we restrict ourselves to the case p > ¢, which guarantees that o and g are positive. Thus, as a function of r =

of
|x|(%) , v( + ) defined on [0, o ) solves

(o' 1’_21/)’+D\v’ "_21/+,8r1/+ v— v ]7=0 Vr>0 ®)
r
It is easy to see that the condition (2) is equivalent to, if the solution u is given by Eq.(4),
1

limr#v(r) =0 ©)
and the condition (3) implies

: nB -1 n-1 _

ltgglt ‘Lgtiﬁv(r)r dr = o )

For nB=1, Eq.(6) is not true. For nB <1, by Eq.(6) we see that v e L' (0, o ; r"~'dr) which shows that Eq.(7)
holds automatically. That is, the singular solution is also self-similar very singular solution.

Singular solutions were first discovered for the semilinear heat equation u, = Au —u” in 1983 by Brezis and
[2]

Friedman ~°. Since that time many authors studied the self-similar singular solutions of the following
equations[3 7,

u, =A(u") —u’ O<m<ow, g>1

u,=A(u") = | Vul m=1,p>1

w,=div( | Vu" "> Vu") —u’ O<m<o,p>1, ¢>1
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For simplicity, throughout this paper we take
o=l+q-p,u=p/(2-p), 0=1/(p-1)>1, n=p-(pn+1)g<0
w*=(,up_l(/.L—n)/(y.B—l))l/(z_P) m>n
To study the solution of Eq.(5) such that Eq.(6) is satisfied, we consider the initial value problem
(| =0 r>0
v(0) =a>0, v'(0) =0
1 Main Results

Theorem 1  Assume that | <g <p <2, B1is given by Eq.(4) and n@<1,ie. 1 <g<p-n/(n+1). For each
a>0,letv(r; a) =v(r) be the solution of Eq.(8). Then

1) There exists a unique finite positive number « * such that A= (0, a* ), C=(a”, o ) and the following
hold:

(D If a € A, then there is a finite number R(a) >0 such that v(R(a); a) =0, v'(R(a); a) <0 and
v(r; a) >0, v'(r; a) <0 forall re (0, R(a)).

@ wv(r;a®) >0, v (r; a*) <0 for every re (0, o ). Moreover,

’

Pyt +L_1 |v" [P 720" +Brv" +v - |v
r

)

lim rév(r; a”) =0

a aB
that is, Eq.(1) has a unique self-similar very singular solution u(x, ¢) = (%) v(r; a”) with r=|x \(%)
@ IfaeC, thenwv(r; a) >0, v'(r; a) <0 for every re (0, » ). Moreover, there exists a constant k(a) >
0 such that
lim rév(r; a) =k(a)
2) As a function of a, k(a) is continuous and strictly increasing such that
lim k(a) =0, limk(a) =

a—a*

2 Some Estimates of the Solution of (8)

Writing (8) as an equivalent integral equation, and using the standard Picard’s iteration or the Banach fixed
point theorem, we can prove that for each a >0, (8) has a unique solution v(r) =v(r; a), at least locally. Let
R(a) =sup{r>0|v(r) >0} >0, then (0, R(a)) is the maximal interval where » >0. From (8), we see that
(1v"|”%")"(0) = —aa/n <0, and hence v'(r) <0 in (0, R(a)).It is easy to prove the following lemma:

Lemma 1 1) Let v be the solution of (8) and R(a) = . Then limv(r) =limv'(r) =0.

2) Let v(r; a) be the solution of (8). Then for every re (0, R(a)), [v'(r)|<d".

It follows from (8) that, near the origin,

_ ] _ (3-p)o _ _
v(r)=a—[p l(i) rp0_P l(i) ,8+<P 1)/Pr21>0_P l(i)
P

(oc+1)6

n 2p \ n n(p-1) +p p+qg\n
1 (p+q)6 (p+q)o+1
oo ) | ©)
By a variable transformation, we define
w(r) =w(r; a) =r'v(r; a) (10)

then a substitution of v =r w(r) into Eq.(5) yields
(p-D)rw +[n-1-2u(p-1)Trw" +u(u-n)w+
lrw" — o > 771 (1 =Bu)w +Brw’ =" [rw' —pw|”] =0 (11)
_3p-2p’ -2
Note that 1 —Gu = 2-p)(p-q)
L(w,):=(p-1)rw +[n-1-2u(p-1)]r, +u(uw-n)w, +
(2-p)|rw’ - pw | =" (rw’ —pw) (rw! —pw, ) [ (1 =Bu)w +Brw" —r" | o’ —,uw|"] +
lro" — o > 771 (1 = Bu)w, +Brw’, —qr” | o’ —paw |7 (rw’ —pw) (rw!, —paw,) ] =0 (12)
Lemma 2 If w’' >0 in a finite interval, (0, r,), r, <R(a), then yaw, >rw’ in (0, r,) and w, >0 on [0, r, ].

<0. Denote by w, = gi;}, then w, satisfies the following linear equation:

Proof As r(r’w")’ =r"(rw')", using the differential operator r di to Eq.(11) yields
r
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120 <) in (0, R(a))
In (0, r,), writing w,(r) =C(r)rw’(r) and applying the expansion (9), we can compute that
(c+1)0

C(r) - +lw_ (pa) ! [ —nl(;_(q)—z)q/,u(%) LI YA ]
near the origin. Thus €(0) = (ua) "' and C'(r) >0 for all sufficiently small r. In addition, substituting w, =
C(r)rw’ into Eq.(12), we obtain that C(r) satisfies

(p=-1)(FPw)C"(r) +[-]C"(r) +C(r)L(rw") =0
Since w’ >0 and L(rw') <0 in (0, r,), we see from the above that C’(r) cannot have its first zero in (0, r,).
Therefore, C'(r) >0 in (0, r,) and w, = C(r)rw’ > (ua) 'rw" in (0, r,).

Now we prove that w, >0 at r,. Let r, =min {1, r,/2} and let ¢ be the solution of the equation L(¢) =0 in

(0, R(a)) with the initial data ¢s(r,) =0 and ' (r,) =1. Then ¢4 >0 in (r,, r, ] since the fact that between any
two zeros of ¢ there is a zero of w,. Now we set k, =C'(r)rw'(r) | r=r, >0 and ¢, =C(ry), then it follows that
L(¢) =0 in (0, R(a)) for ¢ = w, — ky . Since ¢ (ry) = ¢, rw' (r) ‘f:fo’ o (ry) =

L(rw') =qr" | rw' - uw

[C'(r)rw'(r) +C(r)(rw'(r))"] | . —ky=cy(rw'(r))’ | - Therefore, we also write ¢ = 6 (r)rw'(r), then
c (r) satisfies the same equation as C’s, from which 6"(r0) >0 since C (ry) =¢c, >0, and, E’(r(,) =0. It

follows that 6’(r) >0 in (ry, r,) and ¢ = E(r)rw’ >0in [ry, r;). As a result, w,=ky >0 in [ry, r, ]. This
completes the proof of the lemma.
According to lemma 2, we can define three sets for every a >0,

A={a>0] There is an R,(a) € (0, R(a)) such that w'(R,(a); a) =0}

B=1{a>0|w'(r; a) >0in (0, ©) and limw(r; a) < |

C={a>0|w'(r; a)>0in (0, ) and limw(r; a) = |
Since w'(r; a) >0 near the origin, if a ¢ A then w' >0 in (0, R(a) ), which implies that R(a) = » and a e
BUC. Thus, A, B and C are disjoint to each other and AUBUC = (0, « ).

3 Properties of the Solution of 8) When a € A

Lemma 3 Let a >0, the following statements are equivalent:

®© aecA;

(2 There exists a finite R, =R, (a) € (0, R(a)) such that w'(r; @) >0in (0, R,), w'(r; a) <0in (R,,
R(a)) and w"(R,; a) <O0;

@ nB<land sup w(r;a)<w’;

re(0, R(a))

@ R(a) <o and v'(R(a); a) <O.

Proof The proof is similar to that of lemma 3.1 in Ref. [5], we omit the details here.

Theorem 2 Assume that n8 < 1. Then there exists a, e (0, o ) such that A=(0, a, ).

Proof nB <1 implies n<u,ie. (n+1)p>2n. We show at first that A is a nonempty set and when ¢<1,

(0, a) CA. To do this, we consider the following initial data problem for sufficiently small ¢
rlp=2 1\ n q :0
(ot 20y + } )

v(0) =g, v'(0) =0
Let v(r; &) be the solution of (13),z,(¢) =v(r; &)/ ¢, t=re® """ As a function of ¢, z,, satisfies

(77220 + |z; PR 4B +z, (24_P>/”|z;|q=0}
zS(O) —1 z" (0) =
Let E (1) =L

‘v"pizv'+ﬁm +o- v

n-1

(14)

\z |? +?z£, then by computing £’ (¢) <0 in (0, R(a)) which implies that z,(¢) and z’, ()

1/p
are uniformly bounded with respect to 1=0 and £ >0 and |z, | < (2])%2) . Denote by (0, 7,) the maximal

existence interval where z_ >0. Hence, z’. <0 in (0, T.). Now we consider
& & > &
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n-1,,
|z

p—ZZI) ! +

(|

z2(0) =1, z'(0) =0
We claim that there is a finite ¢, >0 such that the solution of (15) enjoys the property that z(¢,) =0, z'(¢,) <0

P2y +Biz' +2=0

(15)

and z(t) >0, z'(¢) <0 in (0, ¢,). In fact, by contradiction we can assume that z(¢) is positive in (0, o ). Then
for every ¢t >0,

L
tHLp (B - 1)zdp < 0 (16)

|2/ 7720 (1) +Biz =

Take ¢=1 such that Lp"’l (nB — 1)z < - 6 for some constant § >0, that is, we have

27720 (1) +Bz< =&t " =1 (17)

For n =1, from (17) we have z'(¢) < —=&°, and z(¢) <O for all suitably large ¢. For n=2, since p/ne (0, 1),
applying the inequality Biz +8t' ™" > (Biz) ' " (6t)"" =B 7""&""t' "' " yields

_z/>(B1—p/n6p/n)6t—]z|—v =1
_(n+1)p-2n
~ on(p-1)
In each case, it contradicts the previous assumption that z is positive. Moreover, by sending t—t¢, in (16) we
deduce z'(1,) <0. Therefore, the assertion holds.

Now we choose 0 < ¢, {,<1 satisfying
(n=1)p/(2q-p)
0<ty—1,<l, gs(t—l) for 1,>1
2

for v >0. From which we see that v" (¢) <" (1) —p(B8' ""8”") log t <0 for all suitably large :.

(1) <Ly, 2 (1) <%z'(t0)

1 D lp-2 p (¢=1)/p
2;)—1‘2 2" (1) +,3t0§0+(2P_2) £o <0
By the continuous dependence of the solution on the parameter ¢, T, >, and z,(t,) =7 <¢,, 2/, (t,) <z'(1,)/2.
1/p
Thus, since |z’ | < (2])]’%2) , from (14) we have
1 2 1 (29-p)/, P (o=t
n- r |p=2_1 n ’ n- _ _ q-p)/p ’
(t ‘zg Z +Bt"z,) <t [(nﬁ 1)z, —-¢ (2]7—2) zg]
Integrating the above from ¢, to t <min{7,, ¢,| yields
(4-1)/p
02 P (o) B, (1) <60 2 P (1) + Bz (1) +,9<27-1’>/1’(2P—2) 2 (1) <
D -

(q-1)/p
t;‘-l[2l—p \zr |p-2z/(t0) + Byl + (;p%) go]; =-6<0

‘p*Z 1-n

Hence, |2/, ["7%2" +Btz, < —=&t' " forall te (1, min{T,, t,} ). By the same argument as in (17), if T, = o, then

there is £ =7(8, B, n, p) such that z,(7) =0 provide that ¢, is suitably large, where & is sufficiently small so that
te(t,, t,). This is a contradiction. Therefore, T, < o and z’,(T,) <0. Thus for the initial value problem (13),
by lemma 3, (0, &) CA when ¢<1 and A is nonempty.

Secondly, we need to show A is an open interval. If a € A, then w' (R, (a); a) =0 and w"(R,(a); a) <0.
By the implicit function theorem, the equation w’ (R, ; ) =0 has a local unique C' solution R, =R, (a) in a
neighborhood of a such that w' (R, (a); a) =0 in such neighborhood, which implies that A is an open set and

R,(a) is a C'-function in A. Moreover, writing m (a) =w (R, (a); a) for a € A, it follows that dm(a) =
a
, de ((l) . .
w' (R, ; a) d +w, =w, >0. Thus, if (a,, a,) CA and a, >0 then a, € A. In fact, by the continuous
a

dependence of the solution on the initial data,

sup  w(r; a)<limm(a) <m((a, +a,)/2) <w"
re (0, R(ay)) aa

so that by lemma 3, ¢, € A and A is an open interval. This completes the proof.
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4 Properties of the Solution of (8) When ac BUC

Lemma4 ILeta>0.ThenaeCs sup w(r;a) >w”.
re (0, R(a))

Proof The “=" part follows directly from the definition of set C. If sup w(r; @) >w" holds, then by
re (0, R(a))

lemma 3, a ¢ A so that a e BUC and w(r; a) is strictly increasing in (0, o ). If = limw is finite, proceeding

r—o

the proof of lemma 3.1 in Ref. [ 5], there is a sequence {r;| such that ((rw') | . (Fw") | )= (0, 0). It

J
follows from Eq.(11) that w =w " by sending j—oo , which contradicts the assumption. Hence, limw =« and a e C.

Theorem 3 There exists a“ >0 such that C = (a*, « ). Moreover, for every a € C there is some constant
k(a) >0 such that

lim r#0(r; a) =k(a) (18)

In addition, as a function of @, k(a) is continuous and strictly increasing and satisfies

al\irﬁ k(a) =0, an/rgk(a) = (19)

Proof The proof is similar to that of theorem 4. 1 in Ref. [5], we omit the details.

By theorems 2 and 3, B=[a,, a” ]. Moreover, we have a € B& su . w(r; a) =w" . By the definition

re (0, R(a
of B, limw(r; a) =w" for a € B.
Theorem 4 LetnB<1.Thena, =a”,thatis, B={a,}| ={a”| and limr'"v(r) =0.

Proof Since u >1/8, We only need to prove a, =a”. We first show that limrw'(r; @) =0 for a € B. We

r—o

consider a function defined in [0, u),

fp) =(n=-pp)p+lp-pl w1 -Blu-p)] +plu-n)
Then f(0) =0 and for every pe (0, u),

S (p) =(n-pp) +B(3 -p) (u-p)* w7 = (2-p) (w-p)' "w " <(n-pp)+

B3 -p)(uw™ )" = (2=p)p' "w " =n—pup+ (Bu—-1) (2 =plp "w " +B(uw” )" =f"(0)
There are two cases: (D f'(0) >0 and @ f'(0) <0. For case (I, using the arguments in the proof of theorem 3,

writing 7 = Inr and v(e”) = v(1)exp| - TA s)ds| , then A satisfies 0 <A <u and
g L ACs) M

(p-DA=JA, 7):=(p-DA +(p-n)A+ A "[1-BA-A"e "'~ (") Ju’ " (e") (20)
For every 0 <& <u - n sufficiently small, f(&) >0. Then A(7) =u — ¢ is a sub-solution of Eq.(20). In fact,
choosing T sufficiently large yields, for 7 > T,

<p—1>dzd%—f<ﬁ, ) < —f(&) <0

In addition, w—w " indicates that there is at least a sequence | 7,1 such that A(7,)—u. By comparison, u —e<A
<u for any small ¢ and sufficiently large 7, which implies that A(7)—u as 7—o so that rw’ = (u - A)w—0 as
r—oo. For case (@), the equation f(p) =0 has a unique root p, =0 in [0, w]. On the other hand, there is | r—
o | such that ,lir}} raw'(r;) =by e [0, pw”™ ] exists, moreover, w " f(by/w" ) =0. Hence, b, =0, i.e., rhno;l rw' =0.

Secondly, denote 7 =1In r and rw' =1iv, when 7 is sufficiently large, the linear operator L in Eq.(12) becomes

L(¢) =(p=1)¢p+[b+o(1)]d-[c+o(1)]d
where b is a certain constant, c =p(u —n) >0 and o(1)—0 as 7—co . It follows that the solution of L(¢,) =0 in
(T, =) with the initial data ¢, (7T) =0, gl)( T) =1 with T sufficiently large has the property that ¢, —o at
exponentially rate as 7—oo . On the other hand, the function  constructed in the proof of lemma 2 is positive in
(ry, ). Since w, and ¢ are linearly independent, one of them must be unbounded. Note that w, > kyis, we see
that w,—o as r—oo . As a result, if ¢, <a”, then by Fatou’s lemma,

*

0 =lim[w(r;a”) —w(r;a,)] = limJ'd w,(r; a)da Bf liminfw, (r; a)da = o

r—o r—ow
%

It is a contradiction. Thus, a* =« . This completes the proof of the theorem.
Proof of Theorem 1 The conclusions of theorem 1 follow directly from theorems 2 to 4.
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