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On the uniqueness of entire functions
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Abstract: We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be
two nonconstant entire functions; n and & two positive integers with n >2k +4. If the zeros of both f(z) and
g(z) are of multiplicity at least n, and ¥ (z) and g'*) (z) share 1 CM, then either f(z) = ¢, e®, g(z) =
cye ~“, where ¢, ¢, and ¢ are three constants satisfying ( —1)*c c,c®* = 1, or f(z) =g(z).
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Let / be a nonconstant meromorphic function in the whole complex plane. We shall use the following
standard notations of value distribution theory“’z]:
T(r, f), m(r, /), N(r, /), N(r, ), -
We denote by S(r, f) any function satisfying
S(r, f) =o(T(r, f))
as r—oo , possibly outside of a set with finite measure.

Let a be a finite complex number, and k£ be a positive integer. We denote by N, (r, 1/(f-a) ) the counting
function for zeros of f(z) —a with multiplicity <k, and by N,, (r, 1/(f-a)) the corresponding one for which
multiplicity is not counted. Let N, (r, 1/(f-a) ) be the counting function for zeros of f(z) —a with multiplicity
=k,and N, (r, 1/(f-a)) the corresponding one for which multiplicity is not counted. Set N, (r, 1/(f-a)) =
N(r,1/(f-a)) +N,(r, 1/(f=a)) +-+ +N,(r, 1/(f-a)).

Let k be a positive integer. Set

E(a,f) =1{z]f(z) —a=0, Fi, 1<i<k, st f7(z)#0|
where a zero point with multiplicity m( <k) is counted m times in the set.

Let g be a nonconstant meromorphic function and a be a complex number. If f(z) —a and g(z) - a assume
the same zeros with the same multiplicities, then we say that f and g share the value a CM. If f(z) —a and g(z)

— a assume the same zeros ignoring the multiplicity, then we say that / and g share the value a IM.

Let f and g share 1 IM. We denote by N, (r, 1/(f-1)) the counting function for common 1-points of both
fand g about which f has larger multiplicity than g, with multiplicity not being counted, and denote by
N, (r, 1/(f-1)) the counting function for common simple 1-points of f and g. Similarly we have the notation
N (r, 1/(g-1)). Especially, if f and g share 1 CM, then N, (r, 1/(f-1)) =N, (r, 1/(g-1)) =0.

" and Clunie'*’ proved the following result:
Theorem 1 Let /' be a transcendental entire function, n=1 a positive integer. Then f"f' =1 has infinitely

Hayman

many solutions.
Fang and Hua"", Yang and Hua'®' obtained a unicity theorem corresponding to the above result.

Theorem 2 Let f and g be two nonconstant entire functions, n=6 a positive integer. If /"f' and g"g’ share

12
n+c:_1’

1 CM, then either f(z) =c,e”, g(z) =c,e™, where ¢, , ¢, and ¢ are three constants satisfying (c,c,)
or f=tg for a constant ¢ such that "*' =1,

Chen'”’ and Wang"**' extended theorem 1 by proving the following theorem:

Theorem 3 Let f be a transcendental entire function, and n and & two positive integers with n=k + 1. If the
zeros of f are of multiplicity at least n, then /' =1 has infinitely many solutions.

Naturally, we ask by theorem 1 and theorem 2 whether there exists a corresponding unicity theorem to

theorem 3. In this paper, we give a positive answer to the above question by proving the following theorem.
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Theorem 4 Let f and g be two nonconstant entire functions, and let n and % be two positive integers with
n >2k +4. If the zeros of both f and g are of multiplicity at least n, and /**’ and g Share 1 CM, then either f(z)

=ce”, g(z) =c,e” ", where ¢,, ¢, and ¢ are three constants satisfying ( —1)*c,c,c® =1, or f=g.
In fact, we prove the following more general results.
Theorem 5 Let f and g be two nonconstant entire functions, and let n and k£ be two positive integers with
n >4k +6. If the zeros of both f and g are of multiplicity at least n, and E, (1, f*') = E, (1, g"), then either
f(2) =cie, g(z) =c,e™, where ¢,, ¢, and ¢ are three constants satisfying ( —1)"c,c,c® =1, or f=g.
Theorem 6 Let f and g be two nonconstant entire functions, and let n and £ be two positive integers with
n>(5k+9)/2. 1If the zeros of bothf and g are of multiplicity at least n, and £, (1, /') =E, (1, g'*), then
either f(z) =c,e”, g(z) =c,e””, where ¢,, ¢, and ¢ are three constants satisfying ( —1)*c,c,c® =1, or f=g.
Theorem 7 Let f and g be two nonconstant entire functions, and let m, n and % be three positive integers
with m=3, n >2k +4. If the zeros of both f and g are of multiplicity at least n, and £, (1, /") =E, (1 g™,

then either f(z) =c¢,e”, g(z) =c,e ™, where ¢,, ¢, and ¢ are three constants satisfying ( —1)"¢,c,¢™ =1, or
/=g
From theorem 7, we get theorem 4, and for £ =1, we get the results of Zhang[m from theorems 5 to 7.
Theorem 8 Let f and g be two nonconstant entire functions, and let n and k£ be two positive integers with
n>5k +7. If the zeros of both f and g are of multiplicity at least n, and f** and g'* Share 1 IM, then either f(z)
=c,e”, g(z) =c,e ™", where ¢, , ¢, and ¢ are three constants satisfying ( —1)"¢c,c,c™ =1, or f=g.
Let k =1. Then by theorem 8 we get the result of Xu and Qlu[]1 .

In order to prove our results, we firstly prove the following proposition:
Proposition 1 Let f and g be two nonconstant entire functions, and let £ be a positive integer. If the zeros

of both f and g are of multiplicity at least k + 1, and /"' ¢'" =1, then f(z) =¢,e”, g(z) =c,e *, where ¢, ¢, and

¢ are three constants satisfying ( —1)"¢,c,¢™ =1.

1 Some Lemmas

For the proof of our results we need the following lemmas.
Lemma 1'"?'  Let f be a nonconstant entire function such that /**" =0, k a positive integer, and ¢ a non-
zero finite complex number. Then

T(r,f>$N(r, %)-’-N(r’f"%—c) —N( f(A1+.))+S(r f)<N,M( %) +
N(r,fﬁ)—]\/o(r,fﬁ)+s(r’f)

where N, (r, 1/f**") denotes the counting function which only counts those points such that /**" =0 but
S =) #0.

Lemma 2'"?'  Let /f be a nonconstant meromorphic function, and let ¢, (z) and a,(z) be two meromorphic
functions such that 7(r, a;) =S(r, /) (i=1, 2). Then

T(r, ) <N(r, f) +N(r,]%al) +N(r,f_1a2) +S(r, f)

Lemma 3 Let f and g be two nonconstant entire functions such that /**" =0, g"**" %0, and let m and
be two positive integers. If E, (1, /') =E (1, g'*), then one of the following cases must occur:
. 1y —+ 1 | A 1y — 1
Q) T(r, f) +T(r, g) <N,. (r, —) +N(r, —) +N,. (r, —) +N(r, —) +N(r, —) *
/ g k41 f f kel g g fu) _1

— 1 1 — 1 1

N(r’g(k)_1)_N1)(r’fk)_1)+N(m+l(r’f(k)_1)+N(m+l( g(k)_1)+s<r,f) +S(r9 g)
. 1 bg" +a-b
(u)f(k) 1 2 1
Proof Set

k+2) k+1) (k+2) (k+1)
j((((/wrl) f‘]([jr) §<k+1) +2 8 (1)

]

, where a( #%0) and b are two constants.
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Next we consider two cases.

Case 1 W¥=0. Then by (1) we obtain (ii).

Case 2 W#0. Let z, be a common simple 1-point of both /*’ (z) and g’ (z), then by a simple computing,
we know ¥(z,) =0. Thus we have

Nl)(r,f(,f%_]) =N1>(r, 5%_1) sN(r, Llp)ﬁf\/(r, W) +S(r, f) +S(r, &) @)

By our assumptions, ¥(z) have poles only at zeros of f**" (z) and g**" (z). Thus we deduce from (1)
that

_ 1 _ 1 | 1
N(r, ¥ $N(r, *) +N(r, 7) +N (r, f) + N, (r, f) +
( ) f g 0 f“ 1) 0 g(A 1)
_ 1 1
Nowar 7> g 27) # Nt (72 2 7 ®)

where N, (r, 1/f**") denotes the counting function which only counts those points such that /**" =0 but
JUf*P =1) #0, and N,(r, 1/g"*") denotes the analogous quantity.
By lemma 1, we obtain

T(r,f)stH(r, %) +7v(r,]M+_1) —No(r,jﬁ) +5(r, f) @)

1 = 1 1
IV s » (b 4|~ + 5
1, &) SNea(r ) # N o op) =Ml s ) #5080 )

Combining (2) to (5), we soon obtain that case (i) holds. The proof of lemma 3 is complete.
Lemma 4 Let f and g be two nonconstant entire functions such that /**" =0, g"**" %0, and let k be a
positive integer. If /¥’ (z) and g’ (z) share 1 IM, then one of the following cases must occur:

W) T(r, ) +T(r, g) sNhl(r, %) +N(r, %) +N,M(r, é) +N(r, é) +%N(r,f(k+_l) +

w3 ) 3 ) #5500

2
L _bg® sa-b
(u)f(k) 1 P

, where a( #%0) and b are two constants.

Proof Suppose that ¥ is given by (1). Similarly, if ¥=0, then we can get (ii) by (1).
Next we consider the case that ¥#0. If z, is a common simple 1-point of both f*' (z) and g* (z), then
Y(z,) =0. Thus we have

N”(r,fﬁ)ﬁl\/(r, %I,)SN(r, W) +S(r, f) +S(r, &) ©)

By computing, we know that the common 1-points of /'’ and g'* with the same multiplicity are not poles of
Y(z). Thus we have

_ 1 _ 1 1 1
N(r, ¥ sN(r, —) +N(r, —) + N, (r, —+) + N, (r, —+) +
( ) f g 0 f(k 1) 0 g(k 1)
_ 1 _ 1
NL(r,f—M _1) +NL(r, o _1) %)

where N, (r, 1/f**") and N,(r, 1/g""*") are defined in lemma 3.
Noting that

A R e L e K () B R () B
%N(r,fﬁ) +%N(r, g(,f—_l) +S(r, ) +S(r, ) @®)

Combining (4) to (8), we soon obtain that case (i) holds. The proof of lemma 4 is complete.
Lemma 5" Let f be a nonconstant meromorphic function and % be a positive integer. Then

N(r,f(l—k))$N(r, %) +kN(r, ) +S(r, )

Lemma 6" Let f be a nonconstant entire function and k be a positive integer with £=2. If f(z) /" (z) #

0, then f(z) =e“"’, where a( #0) and b are two constants.
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2 Proof of Proposition 1

Because f(z) and g(z) are two entire functions, by
/Y (g (2) =1 ©)
we have f* (z) # 0 and g*' (z) # 0.

Let z, be a zero of f with multiplicity n. Then z, is a pole of g'*’

with multiplicity n — k(n=4k + 1), which
contradicts that g is an entire function. Hence f(z) 0. Similarly g(z) #0.

If k=2, then by f(2)f" (2) #0, g(2)g'" (z) #0 and lemma 6, we deduce from (9) that f(z) =c,e”, g(z)
=ce ", where ¢, ¢, and ¢ are three constants satisfying ( —1)*c,c,c =1.

If k =1, then by f(z) #0 and g(z) #0, there exist two entire functions a(z) and 8(z) such that f(z) = e
g(z) =¢””  Therefore we have f'(z) =a'(2) e % 0, g'(z) =B'(z) ?? = 0, that is o' (z) #0, B'(z) #0.
Thus o' (z) =e", g'(2) =¢””, where y(z) and §(z) are two entire functions.

From (9) we get

ea(z) +B(z) +y(z) +8(z2) — 1

Differentiating the above equation gives
(O[,(Z) +B/(z> + ')//(Z> +3’(Z> ) ea(l) +B(2) +y(z) +8(2) =0

Thus
a'(z) +8'(2) +y'(2) +8'(2) =0
that is
e +y'(2)= - (7 +58'(2))
By
) ) (")’ &)
T(r, y'(2)) =m(r, ' () =m(r, “5) =50, @)
) ) (") 5(2)
T(r, 8 (z)) =m(r, §'(z)) =m(r, W) =S(r, %)
we have
T(r, ") =T(r, &) +S(r, &)
Thus
e’ +e’ = - (y'(2) +8'(2)) =a(2) (10)
where a(z) is a common small function of both €’ and &’ .

Suppose that a(z) %0, then ¢”'”/a(z) + ¢’” /a(z) =1. By the Nevanlinna second fundamental theorem, we

obtain

eé(z) e(S(Z)

(s 3 A N ! A 1
10 ) =1 205 ) 50 DN S5 ) N s | ¥ e )¢

S(r, &) =N(r, ) +5Cr, @) =S(r, &)

1 1
¢ /a(z) -1 "/ a(z)
Thus we deduce that ¢* is a constant. Similarly ¢’ is a constant. Hence 8(z) and y(z) are also two constants,
and 6'(z) =0, y'(z) =0. Then §'(z) +v'(z) =0. From (10) we get a(z) =0, a contradiction.
Thus
8'(2) +y'(2) =0, ¢’ +e”” =a'(z) +B/'(z) =0

) +S(r, &) :TV(r,

and

y(2) +8(2) =b, &7 4" 77 =0
where b is a constant. Hence we get

y(z)=c;, 8(z) =b-y(z) =c,

o' (z) =¢’ =c, B'(z) = -a'(z)=-¢
where ¢, ¢, and ¢ are three constants.

Let
a(z) =cz+1Inc;, B(z) = —cz +1nc,

(2) eB(Z)

then e*” =c¢,e” =ce ", that is f(z) =c,e”, g(z) =c,e “. Substituting it into (9) we soon obtain

’
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(¢,¢c,)c¢” = —1. The proof of proposition 1 is complete.
3 Proof of Theorem 7

By m=3 we have
_ 1 1 1 - 1 1 1
N(r’f“ —1)_7N”(r’f’” —1) +N("1”(r’f“ —1) Sva(r’f“ —1)

— 1 1 1 1 1 1
N(r’ g —1) _TN”(r’ g —1) +N("”‘( g —1)$7N(r’ g —1)
By the Nevanlinna first fundamental theorem, we have

r #< r & <I(r r
N o ) ST ) +0() <TG +5Cr D

A7)

Similarly, we have

1
N(r, éﬁ) <T(r, g) +5(r, &)

<T(r, f) +5(r, f)

N(r, §)$T(r, g) +S(r, g)

Obviously,
1y 1 1 1 1\ _k+l 1
N(r, *)$*N(r, *), N,, (r, *)< kE+1)N|(r, *)$ N(r, 7)
£I=a M) Ml TSGR DNr )< N
N(r, L sl—N(r, L), N,M(r, L)s(k+1)zv r L)sk“N(r, L)
g) " n g g g) = n g

Suppose that
T(r, ) +T(r, g) gNkH(r, %) +N(r, —) +N,M(r, L) +N(r, é) +N(r’f_">1_ 1_) +

then we have

T, )+ T, ) <[5 4052

That is
(%_knﬁ) +(% k;2)<S(r ) +S(r, g)

It gives T(r, f) +T(r, g)<S(r, f) +S(r, g) because n >2k +4. This is impossible. Hence by lemma 3 we
have

)7+ (5 + 2T ) #S(r, ) +5(r, @)

n

1 bg"" +a-b
T 2" 1 (11)

where a( #0) and b are two constants.

Next we consider three cases.

Casel b#0, a=b. Then (11) becomes 1/(f" -1) =bg"™ /(g"¥ - ).

If b= -1, then /¥ g* =1. By proposmon 1, we obtam that f(2) =c¢,e”, g(z) =c,e™, where ¢, , ¢, and ¢
are three constants with ( —1)"¢c ¢, =1.

If b# -1, then /¥ — (1 +1/b) = —1/(bg'" ) # 0. By lemma 1, we have

T(r, ) <N (. )+S<r n<irl = %)+S< NG p ese

f

that is
(1—’L1)T<r 5 <S(r, )

It gives T(r, f) <S(r, f) because n >2k +4. This is impossible.
Case2 b#0, a70. From (11) we get g’ + (a - b)/b#0. Thus by lemma 1 we have

T, &) <Ny, 1;) +S(r, g)



392 Zhang Minzhu

Similarly we can deduce a contradiction as in case 1.
Case3 b =0, a#0. Then by (11) we have

w_1 wm 4_1
= e (12)
Thus we get
1 1)1
f=;g+(1 )k‘z +p(2) (13)

where p(z) is a polynomial of degree at most & — 1.
Now we prove that ¢(z) = (1 —1/a)z"/k!+p(z) =0. We consider two cases.
(i) f and g are two transcendental entire functions. Suppose that ¢(z) #0, then by lemma 2 we have

T(r,f><7v(r, %)Jv( e q)+S(r = (,%)+N(r, §)+S(r,f)s

N F) () G N S TG TG )+ ) (14)

Obviously, we get from (13) that T'(r, /) =T(r, g) +S(r, f). Substituting it into (14), we get (1 -2/n) -
T(r, ) <S(r, f). It gives T(r, f) <S(r, f) because n >2k +4. This is impossible. Thus (1 -1/a)z"/k! +
p(z) =0. Hence by (13), we obtain f=g.

(i1) f and g are two polynomials.

Let fand g have s and ¢ pairwise distinct zeros, respectively, /(z) =¢,(z —a,)" (z -a,)? (z-a,)", g(z)

=c,(2=b,)" (z=b,)"--+ (z2=b,)™, where ¢, and c, are two constants, [, >2k +4(i=1,2, -+, s), m; >2k +
4 (j=1,2, -, t). Differentiating the two sides of (12), we get /***" =g"**" /4. Hence we have
(z=a)" " (z=a) " p () = (z=b)" T e (2= b,) ", (2) (15)

where p, (z) and p,(z) are two polynomials with deg p, = (s—-1)(k+1),degp,=(t-1)(k+1).

By [, >2k+4(i=1,2, -, s), m>2k+4(j=1,2, -, t),we have Y ([, - (k+1)) >s(k+3) >
i=1

(s =1)(k+1), Z(mj—(k+1)) >t(k+3) > (t-1)(k+1). Then from (15), we know that there exists
j=1

z, such that f(z,) = g(z,) =0. From (13) and f(z,) =g (z,) =0 with the multiplicity of z, > 2k + 4, we get
(1 =1/a)z"/k! +p(z) =0. Thus we obtain f=g. The proof of theorem 7 is complete.

4 Proof of Theorem 5 and Theorem 6

First we prove theorem 3.
Obviously,

[ ) ) o ) o
From this and lemma 5, we obtain

(o) A ol A s
Noting that

M ) =¥ ) = (8 ) - )

then by lemma 5, we get

N )0 )30 o) (o)) s 20 st

kZIN( f) +S(r, ) (17)
Thus from (16) and (17), we have
N(S(r’f“%l)sé(]v(r’jmli—l) —N(r,ﬁ))séw(r,ﬁ) +S(r, )<

k2+1N( )+S(r,f)

Similarly, we have

/
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- 1 k+1 1
N<3(r,g(k)—l)$2n N(T, g)+S<r, g)

Obviously,
) e ) <
N ) e ) 3l <
Suppose that
T(r, ) +T(r, g) $Nk+1(r, %) +N(r, %) +Nk+](r, L) +N(r, é) +N(r,fk+_1) +

g
Nr#—N r ! +N r#+5( ) +S(r, g)
( ’g(k)—l) 1)( ’f<k>_ ( ]dk) ) (3( ’g(“—l) r, r, &
then we obtain that

v

T )+ TG @) < (5 + 25 )T )+ (5 + 2 )T @) 450, f) +S(r, )

That is

(5 -22) 10 0+ (5 =522) =500 0 450 0

It gives T(r, f) +T(r, g) <S(r, f) +S(r, g) because n > (5k +9) /2. This is impossible. Thus by lemma 3, we
have

1 bg" +a-b

£ _1- g® 1

where a( #0) and b are two constants.

In the following we complete the proof of theorem 6 as done in theorem 7. Theorem 6 is proved.
Now we prove theorem 5.
From (16) and (17), we have

R (e e (Y TR G P

Similarly, we have
— 1 k+1 1
T = —
N<2(r,g(k>_1) N(r, g)+S(r, )

Obviously,

1 1 1 1
Mr o) = o) = )
— 1 1 1 1
N(r’ g —1) _7N1>(r’ g" —l)st(r’ g —1)
Suppose that
r ]—)+N(r —)+N (r 1—)+N(r ]—)+N(r L )+
I R S R S R Sl R S

T(r,f)+T(r, g)gthl
_ 1 1
G +N(2(r,ﬁ,f) _1) +N(2(r, g® _1) +S(r, f) +S(r, g)

then we obtain that
1 2k+3 1 2k+3
(?-—; )T(r,f)+(— * )T(r &) <S(r, f) +S(r, g)

It gives T(r, f) +T(r, g) <S(r, f) +S(r, g) because n >4k +6. Thus by lemma 3 we have
1 _bg(k) +a-b

f(k) -1 - g(k) -1
where a( #0) and b are two constants.
Next we complete the proof of theorem 5 as done in theorem 7. Theorem 5 is proved.

5 Proof of Theorem 8
From (16) and (17), we have
k+1

NL(r,fﬁ)sN(r,fﬁ) ‘N(r’fml_]) ( f“”)) +S(r, f) <7N( f) +S(r, f)
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Similarly, we have

N(r, é) +S(r, g)
Suppose that
T(r, f) +T(r, g)$Nk+1(r L) ( , )+NA+](r )+N( ;)+%N(r,f<k+_l)+

%N(r’g<k>l_1)+3 ( fml_) 2N ( g<+)+5(r ) +S(r, g)

then we obtain that

(1? 5k2+7)< f)+(L 5k2+7)( ) <S(r, /) +S(r, 2)

It gives T(r, f) +T(r, g) <S(r, f) +S(r, g) because n >5k +7. This is impossible. Thus by lemma 4 we have
1 bg" +a-b
f(’f) -1 - g(k) -1
where a( #0) and b are two constants.
Next we complete the proof of theorem 8 as done in theorem 7. Theorem 8 is proved.

References

[ 1] Hayman W K. Meromorphic functions [ M]. Oxford: Clarendon Press, 1964. 47; 57.

[2] Yang L. Value distribution theory [ M]. Berlin: Spring-Verlag, 1993.

[3] Hayman W K. Picard values of meromorphic functions and their derivatives [ J]. Ann Math, 1959,70: 9 —42.

[4] Clunie J. On a result of Hayman [ J]. J London Math Soc, 1967,42: 389 —392.

[5] Fang M L, Hua X H. Entire functions that share one value [ J]. Journal of Nanjing University Mathematical Biquarterly, 1996,13
(1): 44 —48. (in Chinese)

[6] Yang C C, Hua X H. Uniqueness and value-sharing of meromorphic functions [ J]. Ann Acad Sci Fenn Math, 1997,22(2): 395
—406.

[7] Chen H H. Yoshida functions and Picard values of integral functions and their derivatives [ J]. Bull Austral Math Soc, 1996, 54:
373 —381.

[8] Wang Y F. On Mues conjecture and Picard values [J]. Science in China, 1993, 36(1): 28 —35.

[9] Wang Y F, Fang M L. Picard values and normal families of meromorphic functions with multiple zeroes [ J]. Acta Math Sinica,
New Series, 1998, 14(1): 17 —26.

[10] Zhang M Z. On the uniqueness of entire functions concerning the multiplicity of zeros [ J]. Journal of Nanjing University

Mathematical Biquarterly, 2001, 18(2): 261 —270. (in Chinese)

[11] Xu'Y, Qiu H L. Entire functions sharing one value IM [ J]. Indian J Pure and Appl Math, 2002, 31(7): 849 —855.

[12] Yi H X, Yang C C. Unicity theory of meromorphic functions| M]. Beijing: Science Press, 1995. 41 —42. (in Chinese)

[13] Frank G. Eine vermutung von Hayman uber nullstellen meromorpher funktion [ J]. Math Z, 1976, 149: 29 —36.

BRI E—
T3
(AaXFHF %, B 210096)
(BRI ERFHF L INHFFIR, &K 210097)
?ﬁﬁ:&: ﬁmi’&"&% 0y R ey ﬁ—ﬂi LQ—WEHHTU\T ﬁ”: uf(z) %ﬂg(z)iyﬂk”’ii%i‘
CM 532 1, MR f(2) =ce, g(2) =c,e ™, b ¢, e, ¢ BiH 2 ( — 1) e e,e™ = 1 8 H R

# f(z)=g(z).
KERIF): BRI Hdela;
FESES: 0174.5



