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Multimodal background model with noise
and shadow suppression for moving object detection
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Abstract: A statistical multimodal background model is described for moving object detection in video
surveillance. The solution to some of the problems such as illumination changes, initialization of model with
moving objects, and shadows suppression is provided. The background samples are chosen by thresholding
inter-frame differences, and the Gaussian kernel density estimation is used to estimate the probability density
function of background intensity. Pixel’s neighbor information is considered to remove noise due to camera
jitter and small motion in the scene. The hue-max-min-diff color information is used to detect and suppress

moving cast shadows. The effectiveness of the proposed method in the foreground segmentation is

demonstrated in the traffic surveillance application.
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Video surveillance systems aim to automatically
detect objects in different kinds of environments.
Background subtraction is a common module for
differentiating background from foreground, and those
foreground pixels should be processed for high-level
analysis such as classification or tracking. The
difficulty of background subtraction technique is
mainly in the maintenance and update of the scene
representation, which is called the background model.

In the
published on background modeling. Tab.1 provides a

literature, many works have been

comparison of some popular methods ranging from

-4]
assume

model modality. The unimodal approaches[1
the probability density function of the pixel feature
can be modeled with a single modal distribution. They
can adapt to slow changes in the scene, e.g., gradual
illumination changes, by recursively updating the
model using a simple adaptive filter. However, in an
outdoor cluttered environment, the scene background
is not completely static; a single modal assumption
will not hold. Some approaches are proposed to model
the background with multimodal models° ™. Stauffer
and Grimson extended the unimodal model (the
threshold T is smaller) to multimodal (7 is larger) by
modeling the pixel color as a mixture of Gaussians
(MoG). The multimodal models can handle a
background that is not completely static and keep
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several modals in the background, so the
instantaneous background cannot be represented by a
single image.

Tab.1 Comparison of modeling approaches

Modality Methods

Mean
Median
Single Gaussian
Pfinder'*’
Friedman*

[1,2]
Unimodal

]

Mixture of Gaussian'*] (T is smaller)
W4 (Bimodal)!®
Mixture of Gaussian'®] (T is larger)
Wallflower !
Elgammal[g]
Our approach

Multimodal

Background maintenance in itself is application
oriented. In the traffic surveillance application, some
problems will be encountered as follows.

1) Bootstrapping
initial model obtained by using a training sequence in
which no foreground objects are present. This puts
serious limitations on systems to be used in high
traffic areas, and it is necessary to train the model
using a sequence containing moving objects.

2) Illumination change
changes gradually at different times of day and
suddenly due to a light switch. The background model
should adapt to the variation to decrease the false
positive.

3) Background motion Global motion is caused
by small camera displacements. Local motion of tree
branch sways with the wind. The model should be
robust with respect to these motions.

Many methods assume an

Scene illumination
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4) Shadows Moving objects cast shadows that
should not be classified as foreground. Static shadows
are included in the background and will not cause
serious problem.

To solve the above problems, a statistical model
with kernel density estimation (KDE) is proposed. The
thresholding of inter-frame difference is utilized to
choose the background samples. The perceptual
uniform and computation inexpensive hue-max-min-
diff (HMMD) color spaceM is used to suppress the
shadows.

1 Statistical Background Model

Several assumptions are given: (D The camera is
stationary but with small jitter; @ The scene is
approximately static and only small motion may
occur; (3 The scene illumination may change; 4 Each
pixel in the image will reveal the background for at
least a short interval of the training sequence.

1.1 KDE and background subtraction

The values of a particular pixel over time can be
considered as a pixel process, i.e. a time series of
scalars for gray-value or vectors for color pixel
values. Therefore, the background intensity/density
probability can be estimated by KDE. The background
sample set is extracted from the training sequence
including the foreground objects. We wuse the
thresholding results of inter-frame difference as the
coarse background samples. This differs from the
method of Elgammal, et al. [8], which chooses the
samples directly from the training data and inevitably
consists of the foreground points and results in many
false negatives.

If the inter-frame difference is less than a certain
threshold T,, the newer intensity is chosen as the
sample. Given N frames, the pixel in which inter-frame
difference is larger than T, is not exploited in the

g
density estimation.

si(w, y) =g (2, y),
lgi(x, y) —gi,.(x, ¥) | <T,
i=1,2, -, N-n 1)
where n is the interval of frame, g, (x, y) is the
intensity of pixel (x, y) at frame i, s, (x, y) is the
background sample.

Let S=1{s,, -+, s,} be a sample set of pixel(x,

y). K=K (x, y) is the sample number. The density
of background points can be estimated by the
Gaussian kernel density function to model the
multimodal background. The probability of the current
pixel at time ¢ belonging to background can be

computed by

_ _1x
po=plg(x,y)) = KZ

1 (g-51)?

e 2 @)
N 21h?

where h is the bandwidth of Gaussian kernel function

and it can be computed from the median absolute
deviation (MAD)'®'.

After background density estimation, the
candidate moving objects can be extracted by
subtracting the background image from each current
frame. In the multimodal background model,
background cannot be represented by a single image;
therefore, the subtraction operation is implemented by
probability thresholding. If the probability is less than
a threshold 7', the observed pixel probably belongs to
the foreground, otherwise it is considered as
background. The initial detection mask M, is given by

1 p.<T,
M=l "2 ®)
t= *p

1.2 Noise removal

In outdoor surveillance systems, the camera is
usually installed on an overbridge or high poles.
When heavy vehicles pass the overbridge, the camera
will experience small jitters and these introduce some
noise in the detected foreground, particularly in many
obvious edges. This noise is big in size. If exploiting
the simple morphological operator to remove the
noise, it will also incorrectly remove some small
moving objects, e.g. people or vehicles near the road
vanishing point. Due to the noise mainly resulting
from the camera translation, we further classify the
candidate foreground with the probability p, ,
computed as

(3, e
Puy = SeS, \ i=1 «/2’“'7

7(#1*7@)2

o), M (x,y) =1

“)

where S is one of the sample sets of the 8-neighbor of

(x, y) and has K samples, S, is a set of the 8-
neighbor of S, h is the bandwidth of the 8-neighbor
of (x, y) kernel function.

1.3 Shadow suppression

Color feature usually gives much information and
is better than intensity in suppressing shadows. Due to
the scalar color quantization of HMMD being
equivalent to the vector color quantization of the hue-
saturation-value (HSV) color space, we use the
HMMD color space to detect shadows.

Although shadows share the same motion as the
objects casting them, shadows have their particular
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features. They have similar chromaticity but lower
brightness than the corresponding background pixels.
That is, a shadow cast on a background does not
significantly change its hue and often lowers the
saturation of the points“o].

For every pixel detected as candidate foreground,
its corresponding samples are represented with hue,
diff, and sum in the HMMD color space (see Fig.1) as

C.=(c!', ¢!, ¢). Given the observed pixel’s color

d
[

vector C, = (¢!, ¢!, ¢') at time ¢, the detected mask

after shadow suppression can be computed by
0 M, N( ‘ch,,—_ilrge('i“ K(ch,i)‘STh)ﬂ

((cd,t —_lfyfg?q_yK(cd,i) )<T,)N

T, <— LT
sl == 42
med (c,;)

i=1,2, o K S

M, otherwise

)
where med(z) is the median function of samples. The
use of median operator relies on an assumption that
the background at every shadow pixel has many
modals with little variation and will be visible more
than fifty percent of the time during the training
sequence. T, takes into account how strong the light
source is. The stronger and higher the sun is, the
lower value of T is chosen. T, is less than one due
to the shadow’s being darker than the median value of
the background. The choice of 7T, and 7, is usually

chosen empirically.
White

Black
Fig.1 HMMD color space model

1.4 Model adaptation

In time the variation of scene should require
background model changing. We update the model
firstly by adding new n frames and disusing the oldest
n frames. Then compute new inter-frame differences,
and add the new background if the
differences are less than T,.

samples

2 Experimental Results

The proposed algorithm is tested on a variety of
outdoor traffic sequences. All sequences are captured
with moving objects in the scene. In the first
sequence, the sun is strong and high. Shadow is not
main false positive, but the trees along the road wave
with the wind load (see Fig.2).

N

3039 3:5Q
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(e) (d)
Fig.2 Detection results for sequence 1. (a) 6 218th frame
(240 x352); (b) Initial detection; (c) Noise removal; (d) Shadow
suppression

The second sequence is captured at dusk, so
shadows are longer and more obvious (see Fig.3).

it

(d)

Fig.3 Detection results for sequence 2. (a) 210th frame (240
x320); (b) Initial detection; (c) Noise removal; (d) Shadow
suppression

Shadow suppression module aims to prevent
moving cast shadows being misclassified as moving
objects or parts of them, thus reducing the false
positive. N is set to be 50 and n =2; other parameters

are set in Tab.2.
Tab.2 Parameters setting

Sequence T, r, Ty Ty Ty T
1 20 0.012  0.08 0.8 0.1 60
2 15 0.018  0.12 0.6 0.1 30
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In Fig.2, there are many trees on the right side of
the road waving with the wind. In initial detection
results, there are many false positives due to the noise.
After noise removal, most of them are removed. Image
sequence in Fig.3 is captured at five to six o’clock in
the afternoon. There are strong shadows that will
cause serious problems without suppression. Note that
the leftmost car is stationary over a long time, so it is
not detected as foreground but as background.

3 Conclusion

We have presented a statistical multimodal
background model for moving object detection in
video sequences with both intensity and HMMD color
information. The inter-frame difference is used to
choose the coarse samples and this decreases the false
negative. Noise and shadow suppression is processed
to decrease the false positive. The proposed algorithm
is tested in traffic sequences and can extract the
foreground with good performance.
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