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On approximating multifractal traffic burstiness
with Markov modulated Poisson processes
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Abstract: We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for
modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability
and correlation in moderate time scales while being analytically tractable. Important statistics of traffic
burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is
presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the
performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison
respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the
fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.
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Since the seminal work of Leland, et al. [1]’ there
has been numerous evidence solidly confirming that
traffic in packet communication networks, particularly
the Internet, is better characterized by statistical self-
fractal-like processes
surprising long-range dependence (LRD) in second-

similar or which present
order statistics (see Ref. [2] and references therein).

Self-similarity is appealing due to 1its concise
characterization of large-time scale burstiness in
network traffic. However, when looking into finer time
scales, from a few hundreds milliseconds downwards,
there are more complex singularities beyond self-
similarity. A multifractal model, such as multifractal

cascades' >+

has been proposed to capture the
burstiness of these small time scale behaviors. Self-
similarity in large time scales and multiscaling in
small time scales provide a complete description of
packet network traffic' >’

A number of performance studies’’ ™ have
shown that self-similarity can have a detrimental effect
on network performance leading to increased
queueing delay and packet loss rate. Fractional
Brownian motion (FBM) is considered proper for
performance analysis of traffic'”’.
Although Internet traffic is statistically characterized
by LRD with sound evidences, for multimedia

applications, whose QoS requirement, such as packet

self-similar

delay and loss rate is very stringent, only correlations

[10]

under critical time  scale or correlation

Received 2004-04-26.

Foundation items: The National Natural Science Foundation of China
(No. 90104009), the National Bacic Research Program of China (973
Program) (No. 2003CB314801).

Biography: Ji Qijin(1974—), male, graduate, andyji@ seu.edu.cn.

horizontal "'’ are relevant to the queueing
performance due to the reset effect'”’. This insight
makes modeling long-range dependence traffic with
short-range dependence processes possible.

traffic

characteristics was investigated in Ref. [ 13 ], which

Performance impact of multifractal
showed that the fine timescale features can affect
performance substantially at low and intermediate link
utilizations, while the coarse timescale self-similarity
is important only at intermediate and high utilizations.
This discovery further confirms that burstiness in
small time scales is dominant when a small buffer/
large bandwidth resource provisioning policym is
employed, yet till now no analytical model has been
suggested and examined for multifractal scaling
behavior of network traffic.

Performance analysis based on an analytical
model is flexible and inexpensive compared with
simulations. A Markov modulated Poisson process
(MMPP) is a versatile traffic model that has been
extensively studied in Refs. [ 14 — 17 ]. While it is
powerful in modeling several types of traffic, it is
analytically tractable with matrix geometric method, or
more recently the invariant subspace approach[m. In
this paper we investigate whether multifractal traffic
burstiness can be approximated with MMPP. The
choice of MMPP is motivated by its ability to capture
both the variability and correlations in moderate time
scales. Particularly, we emphasize two significant
statistics, the index of dispersion for counts
(IDC )“5’19] and coefficient of skewness'”’ for
modeling burstiness in different time scales. We
compare the mean queue length and the survival
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function or packet loss rate (PLR) in finite buffer
situations of the queueing model between real traffic
trace and MMPP samples via extensive simulations.
Numerical results show that MMPP is an accurate
performance model for characterizing multifractal
traffic burstiness in the interesting time scales.

1 Multifractal Scaling of Network Traffic

Let A(t), 0<t < » denote the traffic arrival
process representing the total number of packets or
bytes sent over a link up to time #, then the traffic
rate process is the increment process of A (), which
represents the number of packets or bytes in a time
interval, e.g. [ t,, t, +8(t) ]. The traffic is said to be
local scaling with exponent « (¢,) if the traffic rate
process behaves like (8(¢))* as & (t) — 0.
Informally, signals with a(¢,) = H at all instants ¢, are
called monofractal (including exactly self-similar
processes such as FBM) while signals with non-
a (t,) are called
multifractal. While self-similarity or mono-fractality

constant scaling exponent

describes the consistent scaling behavior in a global
time scale, multifractality focuses on the local time
irregularity of a signal. Multifractal processes have
two properties: spiky increment processes and non-
Gaussian marginals that are described with multifractal
spectra and partition function respectively *'. For
packet networks, in which the traffic is self-similar in
the time scales from hundreds of milliseconds
upwords, locally multifractal behavior of network
traffic means extreme burstiness in small time scales.

The Auckland II data traces[m, which are
collected on a link at the University of Auckland by
WAND group, are examined in this paper. Since
multifractality of these traces has been checked in
several previous works'“*', we omit the multifractal
test and scaling analysis here.

2 Modeling Multifractal Burstiness with
MMPP

Multifractal traffic is very bursty due to both
correlations in wide range time scales and variability
in local time. Consider a discrete time increment
process of the traffic arrival process A (¢), a wide-
sense stationary, non-negative random sequence,
{ X1, as a traffic rate process, and X, as the packet
number or bytes in the i-th time slot. In this section
we first propose an index of dispersion for counts and
third-order moments or related coefficient of skewness

as burstiness measures of network traffic, we then

present a fitting procedure of MMPP to match these
measures of real traffic traces.

2.1 Measures of traffic burstiness

Burstiness has been recognized as a key
characteristic of broadband traffic that plays critical
roles in determining network performance, such as
queueing length distribution and packet loss rate. Two
regimes of scaling are discovered in Internet traffic.
Fractal scaling, like self-similarity, means LRD, i.e.
correlation in large time scales, while multifractal
scaling results in extreme variability in local time with
non-Gaussian distribution. To characterize the traffic
burstiness, both the first order and the second order
statistics are indispensable.

A simple class of burstiness measures takes only
the first order properties into account. These measures
can be considered as different characteristics of the
marginal distribution of the arrival processes. Geist,
et al.”) demonstrated that ignoring the distribution
character would result in optimistic estimation of
queueing performance. The third order moments, or
the normalized version, coefficient of skewness is an
efficient candidate for non-Gaussian distribution. An

estimation of the third order central moment is
Lz (X, = n)’, and the coefficient of skewness is
n =

the third order moment normalized by o . Here u and
o are the mean and standard variance of X,. For
Gaussian process, the coefficient of skewness is
expected to be zero.

Correlation structure of the input processes is
another factor

significant influencing queueing

performance. Measures expressing second order
properties of the traffic are more complex. We
consider the aggregation variance or its normalized
version, the index of dispersion, as a useful tool for
characterizing the correlation properties of the traffic.
For traffic arrival process A (¢ ), the index of
dispersion for counts at time ¢ is the variance of the
number of arrivals in the time divided by the mean
number of arrivals in the same time "’
var[ A(t) ]

ELA(1) ]

Assume the arrival process is denoted as the

IDC(¢) =

previous random sequence { X}, then A(t) is the
sum of n sequential random variables, the variance of
which is given by

var[A(t) | =var(X,,, +--+X,,,) =
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n=1j

nvar (X) +22 2 cov(X;, X, ;)

j=1 k=1
where cov(X;, X,,,) is the autocorrelation coefficient
of X; at lag k. The contribution to aggregation
variance of correlations in the arrival process is
clearly shown in the above expressions.

2.2 Fitting procedure of the MMPP model

MMPP is a doubly stochastic process where the
intensity of a Poisson process is defined by the state
of a continuous-time Markov chain. This modulation
of Markov chain introduces correlations between
successive inter-arrival times in the process. The main
advantage that springs from using MMPPs as traffic
models is that they lend themselves to analysis better
than some alternatives. Important properties of
queueing systems like MMPP/G/1 can, albeit not very
easily, be derived. For a two state MMPP (MMPP-2),
when the underlying chain is in state j (j=1, 2), the
arrival process is a Poisson process with rate A; and
mean sojourn time rj’l.

The fitting procedure of MMPP-2 is to obtain the
four parameters (A,, A,, r; and r,) according to the
information of given samples, which is stationary, to
be modeled. Several fitting procedures of MMPP have
been proposed in Refs. [ 14 — 17 ]. We consider two
special requirements while choosing one of them for
multifractal traffic here: ) The fitted MMPP can
capture the most important statistics of the traffic:
mean, second order moments and third order moments.
@ Feasibility. Some
characterize the statistics of the inter-arrival time.
Although Auckland II is collected with enough

precise time resolution, these procedures are infeasible

fitting procedures try to

in most other cases because of time resolution
limitation.

A fitting procedure based on the moments of the
increment of counting process was presented in Ref.
[14], which can be outlined as follows:

1) Matching the mean arrival rate;

2) Matching IDC of the arrival process in (0,
by ) 5

3) Matching the “limit” of IDC of the arrival
process, i.e. IDC(z) as i— ;

4) Matching the third order moment of the arrival
process in (0, ¢,).

Since MMPP-2 is a special case of versatile
Markov point process, its moments can be derived
analytically and expressed with the four parameters of
MMPP. With estimated statistics and derived ones in

hand we can obtain the four parameters of MMPP by
solving the four equations. Please refer to Ref. [14]
for details.

Although our fitting procedure is similar to the
above one, more issues have to be considered. Firstly,
while the moments of arrival process in Ref. [ 14 ] are
analytical based on renewal theory, we have to
estimate the moments for our traffic traces. Secondly,
three time scales in the fitting procedure should be
chosen properly for our modeling interest. We set ¢,
for a good fitting of IDC(z). The IDC(¢) will keep
constant as ¢ approaches infinity. In practice, infinite
time is impossible. What's more, the fitted trace is
LRD and IDC will increase monotonically for a very
large time scale. We choose a large enough time scale
denoted as ¢, with practical QoS requirements under
consideration. Time scale of ¢, is chosen for matching
burstiness in a small time scale well. Fortunately, ¢, is

insensitive to IDC''* .

3 Numerical Results

In this section we check the approximating
capacity of MMPP to multifractal traffic by comparing
the queueing performance when the queue is loaded
with Auckland II traffic trace and the fited MMPP
samples respectively.

3.1 Goodness of fit tests

We get a set of parameters of MMPP from the
fitting procedure in section 2, which is A, =
1536.443 8,1, =319.804 6, r, =5.0124 and r, =
0.044 80. A powerful goodness-of-fit test is the Q-Q
plot, which plots the quantiles of the trace data versus
the quantiles of the fitted distribution. The Q-Q plot of
Auckland II trace and the fitted MMPP are shown in
Fig.1. The Q-Q plot shows that the fit is very good
except for the right-hand tail, where the fitted MMPP

has too little probability. This means that the fitted
60
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Fig.1 Q-Q plot of Auckland II trace and fitted MMPP
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MMPP is less bursty than the real trace in the time
scale of the fixed interval of the arrival process.
Matching IDC of the multifractal traffic in proper
time scale is key to the MMPP model. The matched
IDC is influenced by the choice of two time scales, i.e.
t, and the time corresponding to the limit of IDC,
which levels off with time increasing. Fig. 2
demonstrates the estimated IDC of Auckland II trace
and two fitted IDCs with different time scales. We find
from Fig.2 that while the IDC curve fitted with ¢, =2
s is accurate in time period between 500 ms and 1 s,
the IDC curve fitted with ¢, =1 s is more accurate in a
small time scale of less than 500 ms. For moderate link
utilization, which is interesting in practice, our
succeeding fitting procedure is based on the later. We
set £, =10 ms to capture the burstiness in a small time

scale.
Br__ Auckland [[ trace
— - MMPP (#y=15)
20F --- MMPP (;5=2s)
15F
]
=
10
5 » .
/
0 1 1 L ]
0 500 1000 1500 2 000
t/ms

Fig.2 IDC curves of the Auckland Il trace and fitted MMPP

3.2 Performance simulations

The performance measures, especially queueing
delay and packet loss rate, are obtained by simulation
with NS2'%7. A simple simulation model is illustrated
in Fig.3 (The unit of bandwidth is bit/s). We focus on
the queueing performance at the bottleneck link.
Although MMPP/G/1 is an analytically tractable
queueing model, we generate samples of MMPP and
also obtain the queueing statistics by simulations. The
mean arrival rate of the trace is about 1.324 Mbit/s
and we set different bottleneck capacities according to
the required link utilizations.

10 Mbit 10 Mbit
Source Bottleneck Sink

Fig.3 Simulation model

The queueing delay is the most significant
component of the end-to-end packet delay, which is
stringent for real time applications such as streaming
media. In practice, end-to-end delay allowing for

multimedia applications is about 200 ms or so and
queueing delay in a single node of a path is at most
20 to 30 ms, which means a very limited queueing
buffer size. Fig.4 shows the mean queueing length vs.
link utilization obtained in simulation.

12r

—a— Auckland I trace
| —— MMPP samples

—_
(=)

Mean queue length/kbyte

1 1 ]
0.3 0.4 0.5 0.6 0.7
Link utilization
Fig.4 Mean queue length vs. link utilization

From Fig.4 we can see that mean queue length
from MMPP sample paths is very close to that
generated from the measured traffic trace when the
link utilization is less than 65%, resulting in a mean
queueing delay of less than 24 ms. When link
utilization reaches 70%, the deviation of mean queue
length resulting from the traffic trace and MMPP
model is large, but in this situation, the queueing
delay of the traffic trace simulation is about 50 ms,
which is unacceptable in practice. We also see that
estimation of mean queueing delay with MMPP is
conservative as the link utilization is less than 60% .

End-to-end packet loss rate is another interesting
performance measure for a network path. The
complementary queue length distribution or survival
function of the queueing model is a reasonable
approximation of PLR. Some simulation results of
complementary queue length distribution in log scale
are presented in Fig.5. From Fig.5 we find similar
results like the mean queue length situation, i.e. the
MMPP model can capture the PLR of multifractal
traffic trace fairly accurately when the link utilization
is less than 65% . Again, MMPPs underestimate the
PLR at high link utilization (> 65%). An interesting
crossover is shown in the figure. When the buffer size
is very small, MMPPs underestimate the PLR but they
overestimate the PLR when the buffer size is
moderate. When the buffer size is large, MMPPs result
in comparable PLR with the traffic trace. We
conjecture that the crossover both in mean queue
length and PLR is caused by the simple correlation
structure in a single time scale of MMPP. In actual
traffic, the correlation is weaker, even independent for
smaller time scales, but stronger in larger time scales.
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Fig.5
with different link utilizations. (a) Link utilization is 0. 50; (b)

Link utilization is 0. 55; (c¢) Link utilization is 0. 60; (d) Link
utilization is 0. 65

Complementary queue length distributions ( PLR )

4 Conclusion

We have examined whether MMPP, a versatile
traffic model extensively investigated in literatures,
can also be employed for modeling multifractal traffic,
e.g. Auckland II. We do not try to capture the exact
statistical character of multifractal traffic such as
multifractal spectrum with MMPP, but the most
statistics  that  influence

important queueing

performance, concretely; IDC for correlation of packet

inter-arrivals and coefficient of skewness for non-
Gaussinity in small time scales. We present a
procedure for estimating the parameter of MMPP-2
customized for our modeling objectives. The
simulation results show that in practically interesting
time scales, MMPP is competent for modeling the
multifractal  traffic, 1i.e. predicting queueing
performance loaded with such traffic, which bring us
multifractal

an analytically tractable model for

network traffic. Extensions of this work to other traffic
traces presenting multifractal behavior are under
investigation and the refinement of time scale choices
in the fitting procedure is left for future research.
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