Journal of Southeast University (English Edition)

Vol. 20

No.4 Dec. 2004 ISSN 1003—7985

Research and implementation of a new web cache strategy

Yi Faling"’

Xie Changsheng'

Han Dezhi' Cai Bin'

(* School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

(College of Computer Science and Technology, Yangtze University, Jingzhou 434023, China)

Abstract: This paper presents a new shared cache technique — the grouping cache, which can solve many

invalid queries in the broadcast probe and the control bottleneck of the centralized web cache by dividing all
cooperative caches into several groups according to their positions in the network topology. The technique has
the following characteristics: The overhead of multi-cache query can be reduced efficiently by the cache
grouping scheme; the compact summary of the cache directory can rapidly determine if a request exists in a
cache within the group; the distribution algorithm based on the web-access logs can effectively balance the
load among all the groups. The simulation test demonstrates that the grouping cache is more effective than any

other existing shared cache techniques.

Key words: web cache; shared cache; distribution algorithm; grouping cache

The world wide web (WWW) has experienced
exponential growth in recent years. This growth has
created a tremendous increase in network loads that
have subsequently affected user response time. This
demand has motivated many research efforts aiming at
improving WWW performance. And web caching has
been widely acknowledged as an important and
promising method. Sun, et al. 'Y find that using a
well-designed web cache with a 50% hit rate is more
effective than doubling the bandwidth for an ISP’s
(Internet service provider) access link to the Internet,
with respect to decreasing retrieval latency.

The web cache technology experiences three
phases: the client cache, the proxy cache, and the
distributed proxy cache?’. The distributed proxy
cache is popularly adopted for its high availability and
scalability:ﬂ. A fundamental question which the
distributed proxy architectures must resolve is how a
cache receives a request for an object when it does
not find out if any other cache has the object before
declaring a global miss*’. The four main existing
approaches include a broadcast probe, a hash-
partitioning of the object namespace among caches, a
directory service and a summary cache, with which the
global miss can be reduced. But these approaches may
increase the latency of the web accesses, in general,
when the number of shared caches increases. The
proposed web cache system contains several cache
groups, and its performance improvement can be

Received 2004-03-28.

Foundation items: The National Natural Science Foundation of China
(No. 60173043), the National Basic Research Program of China (973
Program) (No. G1999033006).

Biographies: Yi Faling (1969—), male, graduate; Xie Changsheng

(corresponding author), male, professor, csxie@263 .net.

achieved by the group routing and querying.
1 Related Work

The broadcast probe is based on the Internet
cache protocol (ICP), which is an application level
protocol built on top of the user datagram protocol or
any other transport layer protocolm. When a request
comes from the client, the cache will first check to see
if it can meet the request. If it cannot do so, the proxy
cache queries all the sibling caches. As the number of
collaborating proxies increases, the overhead quickly
becomes prohibitive. The hash routing protocol
schemes are deterministic approaches for mapping a
web page to a unique sibling cache"*’ . Hashing
distributes the uniform resource locator (URL) space
among the sibling caches creating a single logical
cache spread among many caches. Conceptually,
whenever a user asks for a page, it is the
responsibility of the client to extract the URL and to
find the hash value with the hash function. Depending
upon the hash value, the request for the page is sent
to the cache server corresponding to that hash value.
Since all web requests require the central hashing
service, this service might become a bottleneck or a
single point of failure.

The simple directory service is implemented in
caching and replication for
performance(CRISP)[G:. CRISP servers cooperate to
share their caches, using a central mapping service
with a complete directory of the cache contents of all
participating proxies. To probe the cooperative cache,
the proxy forwards the requested URL to a mapping
server. Similar to the hash routing protocol, a central
mapping service may become a bottleneck when the

Internet service

Research and implementation of a new web cache strategy 449

number of cooperative cache becomes larger. Li and
Pei, et al. |7’ present a cache sharing protocol of the
summary cache, in which each proxy keeps a compact
summary of the cache directory of every other proxy.
When a cache miss occurs, a proxy first probes all the
summaries to see if the request is a cache hit in other
proxies, and sends a query message only to those
proxies whose summaries show promising results. The
key to the scalability of this scheme is that summaries
do not necessarily have to be up-to-date or accurate.
But an inaccurate summary will quickly enhance the
probability of false hits and false misses along with an
increase in the number of proxy caches, and a
reduction in the the performance of the system.

2 Grouping Cache

In this section, a proposed grouping cache
strategy for wide-area web cache sharing will be
presented, in which all cooperative caches are
organized into small groups according to their
positions in the network topology. Each cache group
only saves web pages of the given URLs dispatched
by the distribution algorithm. Each cache keeps an
information table, which includes two parts: D The
group routing information; @ The summary of the
cache directory within the group. When the request
comes from the client, the cache receiving a request
determines the group to which the request belongs, by
group routing information. If the request does not
belong to the current group, the request is forwarded
to the new group. Then the summary of the cache
directory is checked to see if the request is granted in
the new group. In this way, a cache hit/miss can be
decided through forwarding at most once.

There are two important research issues
associated with this approach: (D How to keep load-
balance among all the groups; @ How to construct the
URL routing table. Since network stations which a
group of users have accessed are relatively invariable
during a period of time, it is reasonable to determine
which network stations they will access through their
recent web-access logs. Therefore, we extract the
network station information from URLs which users
have accessed recently, and determine what should be
saved by each group with the distribution algorithm.

2.1 Implementation of URLs’interval

Each URL is composed of a network location and
a path (including file name) such as http: //news.
sohu. com/78/40/news213174078. shtml. The front
part (http: //news.sohu.com/) is a network location,
and the latter is its path. In a cache mesh, contents are

distributed to a cache group according to the network
location of the URL (corresponding to network station
approximately). In order to keep a balanced load
among groups, we adopt the distribution algorithm
according to the web-access logs of regional network
concerned with the shared caches.

When constructing the group routing table, we
mainly take into account the front three parts of the
URL, which are used to make the URL’s interval for a
cache group. Although these parts cannot entirely
express domain names (DNs), they do not affect the
correctness of the distribution algorithm. The process
of making the URL’s interval includes the following
steps. Firstly, construct a string (called DNab) by
fetching the initial two characters from three DNs’ area
in sequence. If there are fewer than two characters or
nothing in some domains, the null character is used to
fill in. E.g., the DNab corresponding to “hust.edu.cn”
is “huedcn”, and the string corresponding to “ab” is
“ab”. Secondly, count each string’s accesses by the
web-access logs. Thirdly, distribute DNs to every
group according to DNabs’® accesses with the
distribution algorithm. Finally, make discrete DNabs
become a continuum. In this way, the continuous
character interval of URLs is captured.

2.2 Distribution algorithm

In web-access logs, the number of each DN’s
accesses is definite. How to assure the balance of DNs’
accesses which are assigned to each group is an NP-
hard in fact. Provided that the total capacities of each
group are equal, this problem is described as follows.

Assume that S = {s,, s,, -, s,| is the set of
DNabs’ accesses, G = {g,, g,, ', g,| is the set of
cache groups, A denotes an assignment scheme, and
N,(A) denotes the total accesses of the p-th cache
group. Thus the objective function of the optimal
assignment scheme A is

N(A)= rr}lin(rn[?x N,(A))

Because each DN’s accesses cannot be
partitioned, this problem resembles non-separable
optimal task assignment(NSOTA)m . It is very difficult
to solve the problem, so an effective approximate
algorithm is designed in which the elements of S are

opt

sorted out firstly, then DNs are assigned to each group
in order according to the average to which each group
should be assigned. To balance the dispatch numbers
of different groups, a compensation factor is added.
With the like-C language, the algorithm is described

as follows:
Input: n is the number of cache-groups, G; is the i-th cache-group, k

450 Yi Faling, Xie Changsheng, Han Dezhi, and Cai Bin

is the number of strings, {s,, s,, =+, s, | is the set of DNabs’ accesses.

,
Output: s, (1<i<k) is distributed to the corresponding group.
Sort {s,, s,, =+, s, | in descending order, namely s| =s} ==
ks
S| syt =c;
i=1;
while(s! =c¢/n)
{
dispatch s to G, c=c—s]
if(n = =1) break;
}
if (n==1){
dispatch s; +s/,, + - +5] to G;;

;i=i+1; Il=n—1;

exit;
}
t=0;
while (n > 1){
while (s, < (c—t)/n){s, =s, +s,_13 k=k-1; |
dispatch s to G,; =5, —¢/n; n=n—-1; c=c-s};
}
dispatch s/ +s/, | + - +s,_, t0 G, 3
In the above algorithm, ¢ is the compensation
factor. When a dispatch number exceeds the average
number, ¢ is positive, and the next dispatch number
becomes slightly smaller, and vice versa. Apparently, ¢
assures the balance of the dispatch number efficiently.
In the rear of the algorithm, n’s value is very
important. If n is not equal to 1, the distribution is
incomplete evidently. In fact, as long as k is greater
than or equal to n, n will be equal to 1 in the end.
Since k is related to the number of web stations
accessed, it is certain that k is greater than or equal to n.

2.3 Implementation of group routing table

Because the data of the distribution algorithm are
derived from the web-access history, it is difficult to
contain all the later accessed DNs. Dispatch results of
the above-mentioned algorithm applicable to all the
DNs by expanding the later DNab. And the expanding
method is as follows: (D Sorting out all the DNabs in
dictionary order; 2 Expanding DNab’s area in a way
in which the front is open interval, and the rear is
close interval; 3 Combining vicinity area within a
cache group. For example, there are £ DNabs which
are sorted according to the dictionary order — N, NV,,
=*, N,. And N, expands to (0, N,); N, expands to (V,,
N,); -=-; N, expands to (N,_,, o) (N, means a
string, V, is the last DNab).

After the calculation of the relevant DNabs’ area
of each cache group through the distribution algorithm
and the interval-continuum, the group routing table is
established. The table contains the continuous
character interval of DNs, the corresponding group
number, and the destination IP address for each group.

The destination IP address is retrieved using the
Internet control message protocol (ICMP) to detect all
IP addresses in a cache group and selecting the
shortest reply time while the whole web-cache system
is initialized. When the system’s configuration
changes, the destination IP address will be redetected
and reconfigured. Each cache keeps a group routing
table, so the group routing table’s size should be
considered. The group routing table’s size is relative to
the number of DNs’ intervals combined, so it is less
than the DN’s number in the distribution algorithm. In
fact, it is not necessary to consider all the DNs
accessed in the distribution algorithm. Because DNs
rarely accessed do not actually belong to a DN’s
interval, we only consider the front DNs accessed,
which account for 90% of the total DNs after sorting
out all the DNs accessed in descending order. We find
that the front 110 DNs accessed frequently can meet
the above condition by analyzing the web-access log
of a college in a week. Fig.1 is a DNs accessed
frequency distribution graph of the college in a week,
which only illustrates the top 20 of the total 2 770
DNs. And the accesses of the top 20 is 44% of the the
total.

Access ration/ %
o N A O ®

Domain names accessed

Fig.1 DNs accessed frequency distribution graph of a college

With the above-mentioned process, the group
routing table contains the destination IP addresses for
all the URLs. Therefore, when a client sends the
request queried in the nearby proxy cache, the
corresponding cache-group and destination IP address
will certainly be found through querying the group
routing table. In succession, the request is forwarded
to the corresponding cache-group’s proxy cache. In
the end, the cache directory table within the group is
checked to see if the request can be found.

2.4 Summary cache

In the cache group, we adopt a summary cache
strategym with each proxy cache keeping a compact
summary of the cache directory of every other proxy
cache. When a user request is forwarded to the relevant
cache group, the proxy cache receiving the request
checks the stored summaries to see if the request may
be stored in proxy caches within this group. If it
appears so, the proxy sends out the request to the
relevant proxies to fetch the documents, otherwise the

Research and implementation of a new web cache strategy 451

proxy sends the request directly to the web server.

In the summary cache, it is not necessary to
update the summary every time when the cache
directory is changed; the update can occur at regular
time intervals or when a certain percentage of the
cached documents are not reflected in the summary
instead. By this approach, two kinds of errors are
tolerated: (1) False misses: The document requested is
cached at some other proxy but its summary does not
reflect the fact. @) False hits: The document requested
is not cached at some other proxy but its summary
indicates that it is. The errors affect the total cache hit
ratio or the interproxy traffic, but do not affect the
correctness of the caching scheme. Apparently, the
more proxy caches a group contains, the more the
system’s performance is affected by the interproxy
traffic. So it is necessary to limit the caches’ number
within a group.

3 Simulation

To examine the benefits of several kinds of
distributed web caches under a fixed cache size, we
design a web-model. By this model, we simulate the
following existing web cache schemes:

e Non-sharing cache Proxies do not collaborate
to serve each other’s cache misses.

e Simple cache sharing(SCS) Proxies serve each
other’s cache misses. Once a proxy fetches a document
from another proxy, it caches the document locally.
The sharing is implemented by the ICP protocol.

e Global cache including hash-partitioning(GCH)
Proxies share cache contents and coordinate
replacement so that they appear as one unified cache

Router

Client I Client I
“ «

with global replacement to the users.

o Summary cache (SC) Each proxy cache keeps a
compact summary of the cache directory of every
other proxy cache.

In the meantime, we also simulate the proposed
grouping cache(GC).

3.1 An introduction to the web-model

Since the focuses of the research are mainly on
web cache’s architecture and strategy, the design of
the web-model concentrates on the forwarding of the
web request, bandwidth and latency of the network
transmission, transmission path of the web request and
implementation of the cache. Fig.2 shows the web-
model graph. In the test model, we simulate router,
switch, server, transmission line, proxy cache and
client. The web-model mainly simulates the processes
in which the web-request on HTTP is sent, forwarded
and responded through the Internet. So the model
focuses on the implementation of the functions, rather
than the details of networks. The model’'s work
contains the following steps:

(D The client sends the request analogous to
HTTP, which contains an address of accessed web-
server and a requested file’s path and name. Because
the DNS servers are not simulated, the address of the
web-server is given directly.

2 The request is transmitted by the line, the
switch and the router, and queried in proxy caches
according to the web cache strategy. If the request
ishit, the data are directly passed to the client,
otherwise step (3 is implemented.

Router

Router

Proxy

Proxy
cache 2

Proxy

cache 3

cache 12

Client

2

Client

Fig.2 Schematic drawing of web-model

452 Yi Faling, Xie Changsheng, Han Dezhi, and Cai Bin

(3 The request is forwarded to the web-server via
the Internet. In fact, in the model the Internet is
composed of several routers and lines. In the course
of forwarding the request, a virtual path is constructed,
and after the web server responds to the request, the
data are passed to the client and the relevant proxy
cache through the virtual path.

3.2 Design of web-model and user access model

The router and the proxy cache are important
parts of the web model. The router’s functions mainly
contain logical connections, routing computing and
data packet forwarding. To simplify the routing
algorithm and keep data transmission stable in the test,
a static routing protocol is adopted in the model. The
proxy cache’s functions comprise storing the recently
requested data, adopting the relevant replacement
strategy when caches are full, and disposing the web-
request’s query. Because we have not researched the
performance of the single cache, we adopt first in first
out (FIFO) replacement strategy in the design of the
proxy caches, not considering the cache’s prefetch
technology. In addition, we place three web servers
which receive the requests from the Internet, and pass
data in accordance with the parameters of the requests.
The bandwidth and latency of the network
communication are both important factors affecting
web cache performance, which are also simulated in
the design of the communication line.

Fig.2 only shows the parts which are relative to
proxy caches. There are four first-level switches,
namely switch 1 to switch 4, and each switch links
three proxy caches. The system has twelve proxy
caches in total. The three web-servers and the
Internet’s interior structure are not displayed.

In the test, the clients send requests for web
documents incessantly. These requests are generated
by a user access model, which was developed by
Simon and Van Wormer. And the model is formalized
as follows"".

Let y;(k) be the indicator of the access of the j-th
document during the k-th time interval, where y,; (k) is
either 1 or 0 (I means that the document is accessed,
and 0 means that the document is not accessed). Then
the total number of accesses of the j-th document at the

k
end of the £-th time interval is simply z y;(7). The
T=1

probability of accessing the j-th document at the (k +
1)-th access can be formalized as

ply(k+1) =1] = v;_zly_,(r)y’”

where W, is the sum weighted usage of all documents,

which is a function of time % and is the same for all
documents; y is the parameter that determines how
rapidly the influence of past accesses on a new
selection dies out”’. The above formula only provides
the method of computing the probability of accessing
the old document. To determine the probability of
accessing the new document, the user access model
uses parameter «, the value of which is approximately
equal to R/T, where R is the total number of different
documents accessed and T is the total number of
documents.

When implementing the user access model s,
which is a stochastic number between 0 and 1, is
regarded as the sign of accessing the new document.
If s is less than «, a new document is accessed,
otherwise the old is accessed. In the test, we suppose
that @ =0.65, and y =0.99.

3.3 Test results evaluation

The test model configures 12 proxy caches with
12 clients of sending requests corresponding to them,
and each proxy cache’s capacity is 8 MB. In the test,
each client sends 10* requests continually with the
above user access model. The size of each request’s
web document is 8 kB, which can be found in web
servers. To analyze the performance and efficiency of
the shared cache, we test the response time and the hit
rate of the no cache, the non-sharing cache and the
four kinds of shared cache. It takes 381 s to finish the
total 12 x 10* requests in the no cache, and takes 330 s
in the non-sharing cache (hit rate is 16.9%). The
shared cache strategies’ configuration is as follows: (D
Three contiguous caches in network topology are
shared in SCS, GCH and SC; @ Six contiguous caches
in network topology are shared in SCS, GCH and SC;
3 Twelve caches are shared in SCS, GCH and SC; @
In GC, all the caches are shared in the 3-grouping and
the 6-grouping.

Fig.3 shows the response time and the hit ratio in
the above configurations of shared cache. From Fig.3,
we can see that all cache sharing schemes significantly
improve the hit ratio and reduce the response time over
the non-sharing cache. In general, the more the web
caches are shared, the higher performance they can
gain. But owing to the cost of multi-cache query,
communication and management, the improvement of
the hit ratio is not in proportion to the total capacity of
the caches shared. Secondly, the overhead of SC is the
least in three existing cache strategies. The response
time of SC is less than SCS, even when the hit ratio of
the former is slightly lower than the latter. The
overhead of GCH is very much larger, especially when
the shared caches increase. Thirdly, the performance of

Research and implementation of a new web cache strategy 453

GC is higher, when compared with three existing cache
strategies. Because the GC dispatches web documents
to every group according to their URL, once the client
sends a request, the cache group in which the request
should be queried is determined. The GC strategy not
only avoids the cost of invalid query in the broadcast
probe, but also solves the bottleneck problem of the
centralized web cache.

400 Hit ratio + 100
0O Response time
}”’} 300 175 <
2 | 2
g 200 - | 450 g
g 100 25 =
0 0

CC(6x2)——

Web cache configuration

Fig.3 Response time and hit ratio under different
shared cache configurations

4 Conclusion

In the proposed grouping cache strategy which
adopts the technique of routing according to the URL
among different groups, each shared proxy cache
contains a group routing table and a compact
summary of the cache directory within a group. The
group routing table is responsible for selecting a
proper group, and the compact summary of the cache
directory determines if a request exists in a cache
within the group. When the number of the cooperative
proxy caches increases, the grouping cache can
greatly enhance the web access efficiency. With the
well-designed web-model and the user access model,

— P FTHY Web Cache

B A2

kA

we can demonstrate the benefits of the grouping cache
over the existing shared cache.

References

[1] Sun H, Zang X, Trivedi K S. The effect of Web caching on
network planning [J]. Computer Communication, 1999,
22(14): 1343 - 1350.

[2] Barish G, Obraczka K. World wide web caching: trends
and techniques [J]. IEEE Communications Magazine
2000, 38(5): 178 — 185.

[3] Michal K, Wojtek S, Adam W. A distributed WWW cache
[J]. Computer Networks and ISDN Systems, 1998, 30(22):
2261 —2267.

[4] Michael R, Jeff C, Syam G. Not all hits are created equal:
cooperative proxy caching over a wide-area network [J].
Computer Networks and ISDN Systems, 1998,30(22): 2253
—2259.

[5] Selvakumar S, Prabhakar P.
comparison of distributed caching schemes [J]. Computer
Communication , 2001, 24(7): 677 —684.

[6] Gadde S, Rabinovich M, Chase J. Reduce, reuse, recycle:
an approach to building large internet caches [A]. In: The

Implementation and

Sixth Workshop on Hot Topics in Operating Systems [C].
1997.93 —98.

[7] Fan L, Cao P, Almeida J, et al. Summary cache: a scalabe
wide-area web cache sharing protocol [J]. IEEE/ACM
Transactions on Network , 2000, 8(3): 281 —293.

[8] Xu YF, YeJ C, Chi X B. An approximate algorithm for
optimizing task assignment in a multiprocessor system
[J]. Journal of Xi’an Jiaotong University, 1999, 33(4): 98
—101. (in Chinese)

[9] Watson E F, Shi Y, Chen Y. A user-access model-driven
approach to proxy cache performance [J]. Decision
Support Systems, 1999, 25(4): 309 —338.

AR A L

(AP AR KRS A SRR PR, KX 430074)
C Rz Rk F i AMA S S, #)0 434043)

WE: R 7T — 369 W& L F Cache 3 K——4-28 Cache, @it de 7 A 69 3k F Cache 452 £ W %
PO B AT 4, IR kAL R 2Rk % Cache AR F ML E R S A /O MBS FIA. B K
AATHE: ORP AR KB A R EAL % Cache 8] 09 &0 FF44; @ 28 A & Cache # ¥ B %

F AR A T K WL T AR /S Cache P QARYE M %37 15 B & # 2 0 4 Fe Ao

% A 5 BT

P #7 & Cache 2069 R £, BN XIE: 441 Cache # AR5 4 A 69 2 F Cache & RARF 2

RS
SKHIA: web %A K F LA 2 Ik
B 425 TP393

DALk B

