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Row-action SAGE algorithm for PET image reconstruction

Zhou Jian

Luo Limin

Zhu Hongqing

(Department of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China)

Abstract: The one-block version of ordered subsets (OS) techniques is used to accelerate the convergent rate
of the space-alternating generalized expectation-maximization (SAGE) algorithm. The new row-action SAGE
(RA-SAGE) algorithm processes projections in sequentially orthogonal order which reduce the dependency
among the projections and speeds up the convergences. Additionally, the over-relaxation parameter in the
direction defined by the RA-SAGE algorithm is also applied to obtain fast convergence to a globally maximum
likelihood (ML) solution. In experiments, the RA-SAGE algorithm and the classical SAGE algorithm are
compared in the application to positron emission tomography (PET) image reconstruction. Simulation results
show that RA-SAGE has better performance than SAGE in both convergence and image quality.
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Positron emission tomography (PET) images are
of great importance to clinical medical diagnoses for
their advantages in mapping the changes of
radionuclide injected in the tissue of human body. In
the past decade, PET reconstruction has benefited
greatly from the introduction of statistical
reconstruction methods. Unlike the relatively rigid
deterministically based method, such as the filtered
back-projection (FBP), statistical methods can be
applied without modification to data with missing or
low signal-to-noise ratios (SNRs) projections. This
makes the statistical reconstruction methods well
suited for emission problems.

The maximum likelihood expectation-
maximization (ML-EM ) method for PET image
reconstruction was first proposed in Ref. [1], also
independently in Ref. [2]. The ML-EM solves the
maximum likelihood (ML) estimation by using the
expectation-maximization (EM) method, which is
based on the notation of a set of “complete” data.
However, due to the typical limits in fidelity of data,
ML estimation is usually unstable. And the slow
convergence of EM has become the greatest
disadvantage.

Therefore, various techniques concerning fast
convergent rate have been studied, and substantial
improvements have been achieved by several methods
such as SAGE™*’ and the ordered subsets (OS)W.
The SAGE algorithm is representative, thus speeding
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up the convergent rate by updating parameters using a
sequence of cleverly chosen “hidden” data spaces
instead of the entire large “complete” data space.
Moreover, better choices of these “ hidden” data
spaces with considerably less Fisher information may
yield even more accelerations for the algorithm.
Unlike the SAGE algorithm, the OS method takes a
strategy that updates parameters grouped on a
sequence of ordered subsets (or blocks) of projections.
It provides the OS method with high performance,
simple implementation and low computational cost.
Generally, OS can be applied to any algorithms which
involve a sum over projections. However, Ref. [ 5]
noted that it may not be globally convergent in the
general inconsistent case without considering OS
balance. In this case, they have successfully imposed
the OS balance by introducing the relaxation
parameter in one-block version of OS and resulted in
the so-called row-action maximum likelihood
algorithm (RAMLA).

The purpose of this study is to accelerate the
SAGE algorithm by using the relaxed row-action
method, and to yield a new fast version of SAGE: RA-
SAGE. Our speed-up tactic is mainly to perform the
reconstruction by accessing projections in a special
order. For a more convergent rate, an orthonormal
processing order has been considered to reduce the
dependency among the projectionsm. In addition, the
relaxation parameter is also used to exert an
appropriate update level for iteration of reconstruction
to keep the convergence to the globally ML solution.

1 Method

In PET image reconstruction, we can assume that
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the photon counts y; collected on the i-th line of
response (LOR) has the Poisson distribution as follows:
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where r; is the Poisson background noise mean, a;
denotes the probability that a photon emitted from
pixel j results in a coincidence at the i-th LOR, i =1,
2, -+, Ny(N, is the number of LOR),j =1, 2, -+, N,
(N, is the number of pixel). The log-likelihood for this
problem is given bym
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Then, starting with a strictly positive vector x'* |, we

have the EM formula as follows' " :
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where ( * ) represents the inner product, A, is the i-th
row of projection matrix A , xj“‘) is the expected value

of pixel j at iteration k.

The RAMLA method is a faster alternative to the
ML-EM algorithm that updates projections in a special
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order™’. Tts update for a given pixel j can be

expressed as

xj(k, t) — x;/{,[—l) + )‘kx;k,z—l) .
> (- 1)
les, ! <A[ y X ' >
t:1’29”'9p;j:1’2,'”,Np (6)
p
where x© 0 = xk_l, us, = (1,2, =, m], ¢ =
t=1

max Y a;,and 0 < Aye, < 1. If set A, =1/¢,, we can

leS$,

to

obtain the “one-block” version OS-EM method as
follows:
MUNSE ¥,
(k, 1) i ,
w2 ay Q
! Z“lj l;, VAT, xBY)

ies,

Though the RAMLA is the special case of OS-
EM, it imposes the OS balance with relaxing
techniques and guarantees the convergence to the
globally maximum likelihood solution. Mathematical
proof can be found in Ref. [5]. In this paper, we
adapt the row-action method into the SAGE algorithm
and then yield the new RA-SAGE algorithm. Like OS-
EM, the update is mainly performed on a group of

single projection spaces. Therefore, the RA-SAGE
algorithm is as follows:
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Compared with the SAGE algorithm >*’, we can
find that the RA-SAGE keeps the sequential update for
pixels but performs projection update (10) on the
grouped single projection spaces S,, ¢ =1, 2, -, p.
Moreover, the M-step (9) has been optimized by using
the relaxation parameters A,. These not only provide
the RA-SAGE with a faster convergent rate than that
of SAGE but also guarantee the update towards a truly
globally maximum likelihood solution. In addition, the
access order for grouped projections can influence the
convergence of our algorithm®’. Therefore, to
improve the convergent rate, special processing order
can be considered in our RA-SAGE algorithm. A
recommended method can be found in Ref. [ 6 ] where
projections are sorted in such a way as to reserve the
smallest dependency among the projections. In this
paper, the angularly orthogonal order has been taken
into account (see the following experiments for more
details).

2 Experimental Results

In the simulations, we have compared the
reconstructions of RA-SAGE with those of SAGE.
Fig.1 shows the phantom that is used for testing the
structural recovery of the reconstruction. This
phantom is similar to the phantom proposed by Eiichi
and Hiroyukim. It consists of an elliptic uniform disc,
a circular hot area, a cold area and a sharp spot. The
circle with a diameter of 90 mm for cold area, a
diameter of 120 mm for hot area, and relative activities
of the elements are shown in Fig.1. The total mean
photon counts in a series of projection data is 10°,
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which is also studied by including 5% uniform
Poisson background noise, representing the range of
random coincidences in PET scans. The sinogram has
128 radial bins and 180 angular views. The size of a
pixel is 6 mm X 6 mm and the size of the image matrix
is 384 mm x 384 mm. As a result, the reconstructed
images are 64 X 64 pixel matrices.

(7.5x7.5)[0]_ 0300  240) [4]

(90x90)[20]

Fig.1 A simulated phantom

Fig.2 shows the reconstructed images obtained
by SAGE and RA-SAGE. In the RA-SAGE algorithm,
we modify the number of projections and access order
of the subsets described in Ref. [6]. Fig.3 shows an
example of the access order for 4 subsets. The choice
of the relaxation parameter depends on a number of
factors'”’, such as the medical purpose of the
reconstruction, the geometry of data collection, and
the characteristics of the projection data, etc. One can
freely choose an appropriate parameter which fits the

Fig.2 Reconstructed images. (a) SAGE reconstruction using
noise free projections; (b) RA-SAGE reconstruction using noise free

projections; (c) SAGE reconstruction using projections with Poisson
background noise; (d) RA-SAGE reconstruction using projections
with Poisson background noise (The iteration number is 20 in
SAGE, and 5 in RA-SAGE).

Fig.3 Access order for 4 subsets (the order is shown
in number)

specific experimental data. In our experiments, the
relaxation parameter A, takes the value 1.08.

Fig.4 shows the log-likelihood versus iteration
number for SAGE and RA-SAGE algorithms. Clearly
we can see that the log-likelihood of RA-SAGE
increases more remarkably than the one of SAGE. To
evaluate the quality of the final reconstructions, the
mean absolute error (MAE) and Chi-square error
(CSE) are both employed in our experiments. The
MAE is defined as
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where «;"* denotes the value of pixel j of the original
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activity image and x; denotes the value of pixel j of a
reconstructed image. It measures the average
discrepancy between a reconstructed image and the
original actiVity image. CSE is defined as

Eoss = Z[yllogu/yf“) (y, -] (12)
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which measures the discrepancy between calculated
projections and the original projections. Fig.5 shows
the MAE changes versus the iteration number of
different reconstruction methods, while Fig.6 shows
the CSE changes via the iteration number.
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Fig.4 Comparison of log-likelihood increase log /' ( y ;
x") —log f(y; x¥) versus iteration number k for SAGE

and RA-SAGE algorithms. (a) Noise free projections; (b)
Projections with Poisson background noise
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Fig.5 Mean absolute error of reconstructed images. (a) Noise
free projections; (b) Projections with Poisson background noise
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Fig.6 Chi-square error of calculated projection data for
various algorithms. (a) Noise free projections, (b) Projections
with Poisson background noise

Clearly, our RA-SAGE algorithm yields the
smaller MAE and CSE than the SAGE algorithm,
which means that our algorithm can offer better image
quality than the SAGE algorithm.

3 Conclusion

In this paper, an effective method for accelerating
the convergence in PET image reconstruction has been
proposed. The resultant RA-SAGE algorithm is mainly
based on the SAGE algorithm in which the row-action
method has been successfully incorporated. Experi-
mental studies have clearly shown that the RA-SAGE
method yields reconstructions with faster convergences
than the SAGE algorithm, which also indicates that our
algorithm is helpful for improving the image quality of
PET reconstructions.
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