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Abstract: An approach to identifying fuzzy models considering both interpretability and precision is proposed.
Firstly, interpretability issues about fuzzy models are analyzed. Then, a heuristic strategy is used to select
input variables by increasing the number of input variables, and the Gustafson-Kessel fuzzy clustering

algorithm, combined with the least square method, is used to identify the fuzzy model. Subsequently, an
interpretability measure is described by the product of the number of input variables and the number of rules,
while precision is weighted by root mean square error, and the selection objective function concerning
interpretability and precision is defined. Given the maximum and minimum number of input variables and
rules, a set of fuzzy models is constructed. Finally, the optimal fuzzy model is selected by the objective
function, and is optimized by a genetic algorithm to achieve a good tradeoff between interpretability and
precision. The performance of the proposed method is illustrated by the well-known Box-Jenkins gas furnace

benchmark; the results demonstrate its validity.
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In recent years, fuzzy systems have become an
active research area. Compared to mathematical
models and pure neural networks, fuzzy systems
possess some distinctive advantages including the
facility for explicit knowledge representation in the
form of if-then rules, the mechanism of reasoning in
human understandable terms, and the ability of
approximating complicated nonlinear functions with
simple models.

Several fuzzy modeling methods have been
proposed including fuzzy clustering algorithm'"’,
neuro-fuzzy  systems'>’ and  genetic  rules
generation"’'. However all these technologies only
focus on model precision that simply fit the data with
the  highest  possible neglecting
interpretability of the obtained fuzzy model, which is
considered as a primary merit of fuzzy systems and is
the most prominent feature that distinguishes fuzzy
systems from many other models'*’.

In this paper, we develop an approach to
identifying a fuzzy model considering both
interpretability and precision. The precision is
weighted by root mean square error, while the
interpretability is measured using the product of the
number of input variables and the number of rules,
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which are the two most important factors concerning
interpretability.

1 Preliminaries
1.1 Takagi-Sugeno fuzzy model

The Takagi-Sugeno (TS) fuzzy model"*’ was
proposed in an effort to develop a systematic
approach to generating a fuzzy model from a given
input-output data set. A typical fuzzy rule of the
model has the form:

Ri:1fx is A, ;and -~ and x, is 4, ,,

then v, =a, +a;x, + - +a,x, (D)

where x; are the input variables, A, are fuzzy sets

defined on the universe of discourse of the input
variables, and y, are outputs of rules.

The output of the TS fuzzy model is computed
using the normalized fuzzy mean formula:

y(k) = ;p,(x)yi )

where p; is the normalized firing strength of the i-th
rule:

T4, (x)

P(x) = ——— 3)
Z HAif<xj)
i=1 j=1
1.2 Interpretability issues about fuzzy model

Interpretability is a subjective property, and there
is no formal definition of it. Nevertheless several
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aspects are believed to be essential, such as

1) The number of variables: a highly multi-
dimensional fuzzy model is difficult to interpret. The
model should use as few variables as possible.

2) The number of rules: a fuzzy model with a
large rule base is less interpretable than a fuzzy
system containing only a few rules. Experientially, the
number of fuzzy rules of an interpretable model is no
more than ten, which is determined by the human
intellect.

3) Characteristics of membership functions:
convexity and normality are two principle aspects
which are satisfied naturally for most widely used
membership functions, e.g., the Gaussian function,
triangle function. The fuzzy partition of all input
variables should be complete to prevent unpredictable
system outputs. Fuzzy sets should be distinguishing,
thus meaningful to assign linguistic terms to a fuzzy
system. Usually, a minimum/maximum degree of
overlapping between fuzzy sets must be enforced.

4) Completeness, consistency and compactness of
effective variable
combination, there must be at least one fuzzy rule
being fired, i.e. fuzzy rules cover the whole input
space. The fuzzy rules in the rule base should be
consistent. There must be no rule whose antecedent is
a subset of another rule, and no rule may appear more
than once in the rule base.

2  Fuzzy Modeling with Tradeoff between
Precision and Interpretability

fuzzy rules: for each input

2.1 Input variable selection

The influence of different input variables to
output is not equal. Some variables decide the output,
while some variables can be neglected in the process
of modeling. Input variable selection is a process of
choosing a small subset of input variables from a
large set of input variable candidates.

Assume the data are divided into part A and part
B, which are used for modeling and testing,
respectively; the input variable selection criterion
(IVSC) is defined as follows' " :

N, Ny
1 1

I :i( sy, [Lsp_ m 2) N
VsC ) \/NAZ’(L yi") NB;(L yi)

ﬁ;(&/lh A My2 1y /B_,BBZ) 4

5 NA;(L yih) NB;(L i) )
where o and 8 are the weights of validation error and
modeling error, N, and N, are the sizes of A and B, v/

and y! are the actual outputs for A and B, y” is the
output of the model trained on B tested with A, y”' is

the output of the model trained on A tested with B,
vy is the output of the model trained on A tested with
A, v is the output of the model trained on B tested
with B.

The process of input variable selection is
described as follows: firstly, a fuzzy model is
constructed for every input variable, and its
corresponding IVSC is calculated. The input variable
with the minimum IVSC is selected. We denote S(1)
for the set containing this variable. After selecting the
most important variable, each of the remaining n — 1
input variables is added to S(1) orderly. For every two
input variables, we compute their IVSC, and select the
most important two variables. We denote S(2) for the
set containing these two variables. Next, we fix these
two input variables and add the remaining n —2 input
variables in order. In the same way, we can get set S
(3) including the three most important input variables.
This process continues iteratively until either of the
following conditions is satisfied.

Condition 1  The IVSC of S(k + 1) is not
larger than that of S(k).

Condition 2  The element number of subset
S(k) reaches the prespecified number of input
variables.

Condition 3
predefined goal.

In all of the above cases, S(k) is selected as the

The IVSC of S (k) meets our

final input variable set.

2.2  Fuzzy modeling based on a fuzzy clustering
algorithm

Fuzzy clustering is a well-recognized paradigm
for constructing a fuzzy model. Numerous fuzzy
clustering algorithms have been developed. Fuzzy C-
means algorithm (FCM) proposed by Bezdek'®' is the
base algorithm from the set of fuzzy clustering
algorithms using the objective function and it has
many modified versions. The Gustafson-Kessel (GK)
algorithm is an extension of FCM, whereas its clusters
are ellipsoids and have different sizes in any
dimension.

The objective function of GK algorithm is

described as follows:
c N

J(Z; U, V) = 3 > (wa)"Di, )

i=1 k=1
where Z is the set of data, U = [, ] is the fuzzy
partition matrix, V = {v,, v,, -+, v} " is the set of
centers of the clusters, ¢ is the number of clusters, /V is
the number of data, m is the fuzzy -coefficient

fuzziness, w,, is the membership degree between the i-
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th cluster and k-th data, which satisfies conditions:

c N
pi € 10,17, ZIJ«ik =1,0 < Z/J«ik <N (6)
i= k=1

The norm of distance between the i-th cluster and
k-th data is

D;, = llz, -, |,24[:<zk_vi)TAi(zk_vi) 7
where

A, = (pdet(F,))"F;"' ®)

p=det(A,) )

F; is the fuzzy covariance matrix of the i-th cluster,

Z (,u'ik)m<zk -v)(z, - vi)T

; (,U«,k )"

The Lagrange multiplier is used to optimize the
objective function (5) and the minimum of (U, V) is

F,

i

10)

calculated as

1
oy = ——————— (1)

‘ 2
2 (Dik/Djk)'"’l
=
N
2 () "z,
k=l

= =
2 ()"

Given the input variable X, output y and weight

V.

i

12)

matrix W.
X=1{x,, 2%y, =+, 2y}
y= {yli Yas 7 yw}
W, =diag(w » pas =5 Miv) (13)
Appending a unitary column to X gives the
extended matrix:

X.=[X 1] (14)
Then the consequent parameters are obtained:
0,:=(X§ W, Xe)_IXZ Wy (15)

The procedure of constructing the initial fuzzy
model is summarized as follows:

(D Choose the number of fuzzy rules and fuzzy
coefficient fuzziness, and the stop criterion &£ >0;

2 Generate the matrix U with the membership
randomly, U must satisfy condition (6);

3 Compute the centers of the clusters using (12)
and fuzzy covariance matrix by (10);

@ Calculate norm of distance utilizing (7);

(® Update the partition matrix U using (11);

© Stop if || U -U""" || <e&, else go to B);

(@ Compute the consequence parameters of the
fuzzy model using (15).

2.3 Optimal fuzzy model selection

Different from some fuzzy modeling techniques

considering only accuracy, our method adopts both
precision and interpretability. As shown in section 1,
the numbers of input variables and fuzzy rules are the
two most important factors about interpretability, so
the measure of interpretability is simply described as
follows:

I=cn (16)
where ¢ is the number of rules, i.e.the number of
clusters, n is the number of input variables. The less /
is, the more interpretable the fuzzy model is.

The root mean square error (RMSE) is adopted as
precision criterion:

R=J;;wfmﬁ (17)

where NV is the number of data, %, is the output of

fuzzy model, y, is the output of real system. The
smaller R is, the more accurate the fuzzy model is.
Assume n,, and n,, are the maximum and
minimum number of input variables, ¢, and c,;, are
the maximum and minimum number of fuzzy rules, we
can build (7, = npy + 1) (e — ¢ + 1) fuzzy
models. The simplest fuzzy model utilizing n,,, input

min

variables and c,;, fuzzy rules is the most interpretable,
while its error is usually the largest. The most
complicated fuzzy model containing n,, input
variables and c,,,, fuzzy rules is most precise possibly,
while is difficult to interpret. The proper fuzzy model
considering both precision and interpretability is
selected based on the objective function:

R - Ry, I = L

R~ Roia 7 Ty =1 ®
where R; is the RMSE of the i-th model, I. is the

i

Ji=A

min

interpretability measure of the i-th model, R, and
R, are the maximum and minimum RMSE of models,
I.. and [, are the maximum and minimum
interpretability of models, A and y are weighted
coefficients satisfying A +y = 1. The model with the
least J; is chosen as the optimal fuzzy model.

The proposed optimal fuzzy model algorithm can
be summarized as follows:

(D Given the maximum and minimum number of
input variables: n,,, and n,;,, and the maximum and
miniimum number of rules: c,,, and ¢

@ For i =npyy, ***, e

@) For j = ¢y, =+, Crmin s

@) Compute the objective function J,;

® Go to step @ until j =c,,,;

©® Go to step @ until i =n,,,.

The optimal fuzzy model with minimun objective
function value gives a good tradeoff between

min »
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precision and interpretability.
2.4 Genetic algorithm optimization

In order to improve the precision of the obtained
fuzzy model, while preserving its interpretability, a
constrained real coded genetic algorithm (GA)“OJ is
applied to optimize the parameters of the fuzzy model
simultaneously.

The optimization is subject to search space
constraints. Premise parameters are limited to change
in a range of = 7% of the corresponding input
domain around their initial values in order to preserve
the distinguishability of the fuzzy sets of the fuzzy
model. Consequent parameters are restricted to vary
= p% of the initial range of the corresponding
consequent parameters for the sake of maintaining the
interpretability of the local fuzzy model.

3 Example

In order to illustrate the performance of the
proposed method, the well-known Box-Jenkins gas
furnace benchmark is demonstrated in this section. It
consists of 296 input-output measurements of gas flow
rate u(¢) (input) and y(z) (output).

We choose u(k-1), -+, u(k-4), y(k-1),
-+, ¥(k —4) as input variable candidates. The result
of input variable selection is shown in Fig. 1.
Considering the simplicity, we can find that S(3) will
be an optimal subset since adding variables cannot
improve the performance sharply.

0.9
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1 2 3 4 5 6 7 8
Number of input variables

Fig.1 Input variable ordering and selection for gas furnace

0.2

Choose cpin =2, Cpux =5, nyy = 1, N = 6,
calculate the objective functions of fuzzy models, and
the results are shown in Tab.1.

From Tab. 1, we can find that the model with
three inputs and two rules reaches the minimum value

of objective function , and is selected as the optimal

fuzzy model.

Tab.1 Objective function values of models

Number of Number of rules
input 2 3 4 5
1 0.899 9 1.0258 1.0337 1.107 1
2 0.302 5 0.367 4 0.4313 0.499 5
3 0.1930 0.262 1 0.4059 0.5170
4 0.2423 0.3829 0.5195 0.667 6
5 0.294 9 0.4715 0.645 8 0.8214
6 0.3602 0.5743 0.787 3 1.000 9

After GA optimization, the final TS fuzzy model

is described as follows:

R:Ify(k-1)is A, and y(k -2) is A,, and
u(k-3)is A, then y' =1.4082y(k -1)
-0.5603y(k-2) —0.3913u(k-3) +
8. 2008

Ry:1fy(k-1) is Ay and y(k —2) is A,, and
u(k=3) is Ay, then y' =1. 294 5y(k-1) -
0.484 2y (k-2) —0. 585 6u(k-3) +

10. 095 6
where A, A,, A5, Ay, As, A, are shown in Fig.2.
o Ay Ax
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Fig.2 Membership functions of fuzzy model

The comparison of the measured output and the
output of the fuzzy model is shown in Fig.3. The root
mean square error of model is 0.064 3, which indicates
that the obtained fuzzy model fits the system properly.
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Fig.3 Comparison of the actual outputs and model outputs
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4 Conclusion

In this paper, an approach to identifying a fuzzy
model considering both precision and interpretability
is presented. An input variable selection algorithm is
proposed to select the most influenced variable. A
fuzzy clustering algorithm, combined with the least
square method, is used to identify a fuzzy model. An
objective function is defined, integrating precision and
interpretability, and applied to select the optimal fuzzy
model. A genetic algorithm is used to optimize the
fuzzy model to improve its accuracy. The approach is
applied to the Box-Jenkins gas furnace benchmark,
and the result demonstrates its validity.
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