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Compound structure analysis of a new chaotic system
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Abstract: This paper analyzes the compound attractor structure of a new three-dimensional autonomous
chaotic system. First, it is found that there exist five equilibria in the chaotic system, and the stabilities of
these equilibria are discussed under a constant scalar control input parameter m. Secondly, the trajectories of

the attractors on a y-z plane are examined, the reasons why these trajectories can exist or disappear are also

described. Finally, the forming procedure of the different scrolls chaotic attractor is explored by computer
simulations when the parameter m is varied. It is shown that the new chaotic attractor has a compound

structure, it can evolve to other three-dimensional autonomous chaotic systems. The results of theoretical
analysis and simulation are helpful for better understanding of other similar chaotic systems.
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A new chaotic attractor of a simple three-
dimensional continuous-time autonomous system was
reported by Liu and Chen''’. This new system, albeit
structurally simple, has many fairly complex dynamic
characteristics, including various periodic orbits (limit
cycles), two separate but arbitrarily closely located
two-scroll chaotic attractors, and double two-scroll
chaotic attractors.

In this paper, we address the question of how
these observed phenomena emerge in the new chaotic
system, which is useful for wunderstanding and
analyzing the new system as well as for designing its
electronic circuits. To reveal the essence of the
observed emerging phenomena, a tunable scalar control
parameter is added to the system, thereby recovering
the compound structure and forming procedure of the
new chaotic attractor.

The three-dimensional continuous-time autonomous
system is described bym

X=x-9z

y=-by+ xz} (1)

Z= —cz+xy
and the “controlled system” with a tunable parameter
m is

Xx=x—-yz+m
j/:—by+xz} )
Z= —cz+xy

In both systems (1) and (2), parameters b and c satisfy
b>c>0and b+c>1"7,

1 Equilibria: Existence and Stability
The equilibria of system (2) can be easily found,
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by solving the three equations # =y =z =0, namely,
x—yz+m=0
by +xz=0
—cz+xy =0
There are five equilibria for different parameters m.

First, for any value of m, the following
equilibrium exists:
Elz(—m,0,0) (3)

Secondly, for 0 > m > — /bc, there are two
equilibria:

E, =(x,,, Yot z,) =

(\/%’\/C+m£,/b+m\/§) @)

E, = (xz- s Yooy 5 ) =

(/E, -Jﬁmﬁ, _meﬂ) )

Finally, for 0 < m < /be, the following two
equilibria also exist:

E3+ =<.X3+ > Y34 ZS+) =

(e fenf e

E;_ = (x3, sy Y3 237) =

[ - e, _\/ m /%,\/b—m [2) o
Equilibria £,, and E,_, and E;, and E, are
symmetric with respect to the x-axis, respectively.

The stabilities of these equilibria are discussed.
Linearizing system (2) about its equilibrium £, yields
the following characteristic equation:

SN =2+ (b+e-1)A" +

(be—c=b-m*)A —bc+m’ ®)
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Denote A=b+c—-1, B=bc—c-b-m’, C= —bc +
m” and rewrite (8) as

SIA) =27 +AN +BA +C =0 ©)
Then, according to the Routh-Hurwitz stability
conditions, the real parts of the roots A are negative if
and only if A >0, B>0, € >0 and AB - C >0. So
for (8) to be stable, parameter m needs to satisfy the
following condition:

m’ <bc—c-b, m*>bc (10)
Because b >0, ¢ >0, bc —c —b <bc, no real value of
m can satisfy condition (10), which means that the
equilibrium £, is always unstable for any value of m.

Similarly, in the case of m > — /bc, linearizing
system (2) about its other equilibria, £,, and E,_,

one obtains the following characteristic equation:
FA) =2+ (b+ec-1)A" +

(m£+mﬁ)A +4bc +4m Jbe (11)

To satisfy the Routh-Hurwitz conditions for stability, it
is required that

m >0
(b+c—1)m( /£+ /%) —4bc —4m /E>O}
c

12)
This is satisfied only if
(b-c)*>b+c
s 4b°¢ } (13)
(b=¢)>=(b+¢)

and in this case, the equilibria £,, and E,_ are stable;
otherwise, these two equilibria are unstable.

Similarly, linearizing system (2) about the other
equilibria, £,, and E,_, in the case of m < Jbe,

yields the following characteristic equation:
FA) =2+ (b+ce-1)A% -

(mg+mﬁ)A +dbe —dm Jbe (14)

and, as analyzed above, these two equilibria are stable
only when
(b-¢)’>b+c
m < —4b%¢° }
(b-¢)* = (b+c)
otherwise, they are unstable.

(15)

2 Trajectory Analysis: on the y-z Plane

Consider the second and the third equations of
system (2):

}if:—by+xz} (16)

zZ= —cz+uxy
where b >c¢ >0, and y, z are state variables while x is
considered as a known function of the time variable :.

In particular, when x is a constant, independent of
y, z and ¢, system (16) can be regarded as a two-
dimensional linear system with constant coefficients .
When x () goes through the intervals ( — oo,

-V/be], [ = Vbe, Vbc] and [Vbe, + o ), system
(16) will have different dynamical behaviors, leading to
very complex dynamics.

The trajectories of system (16) on the y-z plane
are now examined in detail. First, examine the two
lines passing through the origin corresponding to the
transformed axes which the trajectories are tangent to.
These lines have the form z = ky. To determine the
values of k, one may use the first equation to divide
the second equation in system (16) and then obtain*':
dz _dz/dt  —cz+ay

a_dy/dt_ - by +az (a7)
Substituting z = ky, we obtain
_ —cky+xy  —ck+x
© —by+xky  —b+kx
Solving for k yields
—e) + — 2 2
k:(b c) +«/§9[Z c)” +4x (18)
If let
h—
p="" (19)

then Eq.(18) can be rewritten as

E=u+v1 +,u,2 (20)
Ifxe (0, +o), letk =u +4/1 +u, k, =u -
V1+u', thenyue (0, +o0 ), and hence k, e (1, +
), ke (-1,0). It is now clear that the two
transformed axes are z =k,y and z = k,y, as shown by
the two real lines in Fig.1. Similarly, if x € ( — o,
0), letk! =u+/1+u”, k} = =1 +u”, then p e
(—,0),and k; (0, 1), kie( -, —-1).
Hence, the two transformed axes are z = k;y and z =
kiy, as shown by the two dashed lines in Fig.1.

Because b > ¢ >0 in system (2) or system (16),
for any x, it is easy to prove that the system
trajectories on the y-z plane will be confined within
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Fig.1 Trajectories domains of system (2) on the y-z plane
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the domain of |z(¢) | > |y(¢) |,

Hence, by combining the above conditions, one
can see that the trajectories of system (16) on the y-z
plane will be confined within the shadowy domain
shown in Fig.1, regardless of the variable x, and the
two borderlines are given by z=k,y and z = k}y.

On the other hand, for any equilibrium of system
(2), the slopes of these two lines on the y-z plane, which
pass through the origin and equilibria, are independent

of m:
_22;_7_«/b+m b/c _
Ve Y evmdab V
kh:i:&:— b_mvb/C:_ i<_1
Y3+ Y3- N ¢

c-mc/b

From the above, one can see that if any chaotic
attractor exists, then on the y-z plane the equilibrium
must be inside the shadowy area in Fig.1">). Next, the
existence of equilibria as attractors are discussed when
the parameter m is varied.

For system (2), let ki = thoin ++/1 + Ui > K
= e /1 + iy, Whete oy = (Vb +40) /30 >0,
when x > 0; oy = (Jb +¢) /%, <0, when x <O0.
Because system (2) is symmetric to the x-axis, but it is
not symmetric to the y-axis or z-axis, one can see that
| X | # e in the case of m #0, but |x,. | < x,..
when m >0 and |x,, | >x,, when m <0.

For equilibria F,, , E,_and E,, , E,_, on the y-
z plane, they are located on the lines z =%,,y and z =
k,,y, respectively. If they exist as attractors, they must
satisfy the following necessary conditions:

Z Z;_ b
===k, = /7 >kimn Wwhen m= - /bc

Yor  Ya- -

Z3, 2. b ,
3—=3—:k%:——>k2m3xwhen m < /be
Y3 Y3- ¢

When m >0, with the increase of m, both x . and x,,
will increase, but both £, and %', . become smaller
where £, will be close to 1 and £, will be far away
from - 1. The upper-shadowy section in Fig.1 will
circumvolve to the right and the down-shadowy
section, to the left.
Hence, at m =0,
equilibria £,, and E

if two attractors around the
,_ exist, respectively, then they

will still remain to exist for all /bc >m >0. But for
the other two equilibria £,, and E,_, the situation is
different: the part of the trajectories around the two
equilibria, respectively, will not satisfy condition
|z(t) | > | K}y (2) |. In this case, with the increase

of m, the trajectories around the two equilibria

respectively will become less dense and the attractors
also become smaller in size (see Fig.3(a)). Finally, all
the trajectories disappear, and so do the two attractors
(see Fig.4(a)).

Y
(b)
Fig.2 Chaotic attractor with m =0. (a) Three-dimensional

view; (b) Projection on the y-z plane
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Fig.3 Chaotic attractor with m = +6.9. (a) Projection on the y-z
plane with m =6.9; (b) Projection on the y-z plane with m = -6.9
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Similarly, in the domain of 0 >m > — /bc, with
the decrease of m, the two attractors around the two
equilibria £,, and E,_, respectively, will eventually
disappear (see Fig.3(b) and Fig.4(b)).
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Fig.4 Chaotic attractor with m = £7.5. (a) Projection on the
y-z plane with m =7.5; (b) Projection on the y-z plane with m =
—-7.5; (¢) Zoom figure of Fig.4 (a); (d) Zoom figure of Fig.4 (b)

3 Forming Procedure of the New Attractor
and Its Compound Structure

Return to system (2). Now, let parameters b = 16,
¢ =9 in the system to show the forming procedure of
the new attractor and to reveal its compound structure
through numerical simulations. The system now
becomes

Xx=x—-yz+m
y= —16y +xz} 21)
2= -9z +xy

From the above analysis, it is known that the five
equilibria of system (21) are

E, =(-m,0,0)
When 0 >m > —-12,

3 4
E,, = = —
94 (12,J9+4m,J16+3m)
3 4
E, = - = _ il
2 (12, J9+4m, «/16+3m)

When 0 <m <12,

3 4
E. = - = _ _*
3s ( 12,J9 4 «/16 3m)
3 4
E, = - - _2 _x
3o ( 12, \/9 4m,J16 3m)
And
2y 2 b 4
:_szz —_— =
Y20 V2o 14 c 3
2342237—:]%(:_ iz_i
Y3+ Y3- 4 3

When m =0, the phase portraits of system (21)
are shown in Fig.2. When m =6.9 and m = - 6.9, the
phase portraits of system (21) are shown in Fig.3. In
Figs.3 (a) and (b), one can see that the trajectories
around the equilibria E,,, FE,_ and E E,
respectively, become less dense, and if one continues
to increase the absolute value of m, then the system

2+ 9

trajectories around these equilibria will disappear as
shown in Fig.4. Figs.4 (c) and (d) are the zoom
figures near the origin in Figs. 4 (a) and (b),
respectively, where the dots are the equilibria. When
one continues to increase the absolute value of m,
system trajectories on the y-z plane will move to the
origin (0, 0), and thus cannot travel to the hyper-plane
of z =0 even under small per‘[urbation:5 ', So, one of
the attractors shown in Fig.4 will disappear, and there
will remain only one attractor (either upper-attractor
or down-attractor according to the initial value) on the
phase space, which also shows some periodic orbits
when parameter |m | is very large, as shown in Fig.5.
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Fig.5 Periodic orbits. (a) m =14; (b) m =30

4 Conclusion

This paper studies the dynamic properties and the
forming procedure of the new chaotic attractor. It is
shown that the new chaotic attractor has a compound
structure, which is similar to the Lorenz, Lorenz-like,
and Chen’s attractors®™". By tuning a scalar
parameter as a control input, one can obtain one-
scroll, two-scroll and double two-scroll chaotic
attractors as well as limit cycles in the system.
Naturally, there are still some interesting issues about

such compound structures of attractors, which deserve
further investigation in the future for deeper
understand of various chaotic systems.
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