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Limit cycle problem for quadratic differential system
¥=—-y+Ix +mxy,y=x(1+ax +by)
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Abstract: The maximal number of limit cycles for a particular type Il system & = —y + x> + may, 7 =x(1 +

ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting ( Annals of
Differential Equations,2003,19(3):397 —401) are corrected. By translating the system to be considered into the
Liénard type and by using some related properties, we obtain several theorems with suitable conditions
coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions

improve the results given in Suo and Yue’s paper mentioned above.
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1 Particular Type I Quadratic System with
d=n=0

According to Ye’s classification, the quadratic
differential system can be considered in the form'"’:

a'c=—y+dx+lx2+mxy+ny2} (1)

y=x(1 +ax +by)
which is called the general type Il system if 55£0. We
now consider the particular case with d = n =0 and
m##0. Then by scaling we can take m =1, the system
to be considered is

. 2

o.c:—y+lx +xy } (2)

y=x(1 +ax +by)

For system (2), O0(0, 0) has a weak focus with
the order at least one.

Ref. [2 ] made a conjecture: if a quadratic system
has a weak focus of order « and there are g limit
cycles surrounding this focus, then « +8<3. For the
cases of @« =3 and o =2, the conjecture has been
provedB:. In this paper, we will prove that the
quadratic system (2) has at most two limit cycles (LCs)
surrounding its first order weak focus.

The focal quantities of system (2) at the origin
0(0, 0) which are discussed in Ref. [4 ], are
expressed by

V,=-d'l(1-150)

Vs

2142
=(1-5a)"—5"=%
a

V,=l-a(b+2l)
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Vv, =0
respectively. We think that Vs and V, are not correct.
Because for system (1), when d = 0, the focal

quantities are'"’
W,=m(l+n) —a(b+2l)
Wy=ma(S5a-m)[ (I+n)*(n+b) -
a’(b+2l+n)]
W, =ma’[2a” +n(l+2n)] -
[(l+n)*(n+b) —a*(b+2l+n)]
where W,, W5 and W, use the notations of Ref. [ 1],
which are the same as V;, Vs and V, in Ref. [4],
respectively.
For system (2) with m =1, n =0, we obtain
W, =l-a(b+20)
W,=a(5a-1)[bl" =a’(b+21)] (3)
W, =2a*[bl° =’ (b +21) ]

Even if W, =0, that is [ =a (b +2[) or b =

1 —2al’
a

then

Ws=1(1-5a)[d’ +I*(2a-1)]

W,=-2d’l[a’ +I*(2a-1) ]
Thus the expressions of V5 and V. in Ref. [4] cannot
be obtained in any way. For example, if a =2/5, b =
1, 1=2,then W, =0, W, =32/25 and W, =2°/5", but
V,=0, Vs=1/4 and V, =59 - 2*/5°,

2 Reducing to the Liénard Type System

As in Ref. [4], system (2) can be reduced to the
Liénard type system by the following transformations.
First, let ¢ = —y + ¥’ +xy, x =x, then we have

x=¢&
E=-(x+(a-1)x") = (lb-a)x’ -
—(b+2Dx+(L+b)x, 1
S 3

1-x 1 -

for which we see that there are some errors that
appeared in Ref. [4].



518 Lu Bingxin, and Luo Dingjun

Secondly, let u =&/(1 -x), x =x, dr = (1 -x)dt,
then the system is converted into

dr_,
7 (4)
W= —agx) +f(0w)
r
where
. :1+(a—1)x+(bl—a)x2
g(x) (1-x)°
0) = —(b+20) +(L+b)x
Sf(x) (1-x)

Eq.(4) is obviously a Liénard type system.
3 Some Lemmas

The lemma in Ref. [4 ] points out that the limit
cycle around the origin cannot intersect the curve
g(x) + f(x) u = 0 under the following additional

conditions: [ >1/ /15, 0<a <1/5, I —a(b +21) >
0,b>a, Vy>(b+3l)(bl-a).

In fact, by the properties of limit cycles for
quadratic systems, such additional conditions are not
needed for the conclusion. We now prove the
following lemma.

Lemma 1 For any value of a, b, [, any LC
surrounding the origin of system (2) does not intersect
the curve g(x) +f(x)u=0.

Proof Any closed orbit surrounding the origin
of system (2) is a convex closed curve (see Ref. [1]),
as shown in Fig.1, for which the highest and lowest
points are located on y-axis (a branch of the horizontal
isocline line) and the left most and right most points
are located on the branch through the origin of -y +
Ix* +xy =0. This closed orbit cannot intersect another
branch of the horizontal isocline: 1 + ax + by =0.

Fig.1 Closed orbit in (x, y) plane

The transformations x = x, & = — y + Ix° + xy
keep x =0 invariant and convert the other branch 1 +
ax +by =0 into g(x) +f(x)u =0 for (4) and the
vertical isocline -y + Ix* + xy =0 into & =0 which
corresponds to u =0 for system (4).

Without loss of generality, we assume that [ =0
(otherwise, changing (y, ¢) into ( -y, —1) to get

the case). For system (2), we have dx =1>0.

de | .-1-0

So x =1 is a straight line without contact (in the
case [ =0, the system has an invariant line and the
origin has a weak focus, then has no limit cycle), the
closed orbit of system (2) does not intersect x =1, thus
it remains in the part of x < 1, in which the above
transformations are 1-1 correspondence.

The closed orbit L around the origin of
system (4) is shown in Fig.2, for which the highest
and lowest points are still on x =0 (u-axis) and the
furthest left and right points are on the new x-axis
(corresponding to -y + Ix* + xy =0). Thus L cannot
intersect the other branch g(x) + f(x)u =0. Fig.2
also shows if a trajecture intersects with the branch
g(x) +f(x)u =0, then it turns to the upright and
cannot be surrounded by 0(0, 0).

u

L g(x) +f(x)u=0

0 -
W'ﬂle furthest right point

Fig.2 Closed orbit in (x, u) plane

Lemma 1 is proved.
g(x)
f(x)

For the curve u = - , a branch of horizontal

isocline of system (4),
@_ 1 —o'(x)f( x "(x X =
dx—fz(x)[ g () f(x) +f" (%) g(x) ]
fzg—x)[a(mzz)-1+2(b+21)(b1-a)x-

(b+1)(bl-a)x"]

1
S (%)
where H(x) = = (b+1) (bl —a)x* +2(b +21) (bl -
a)x +a(b+2l) -1
We have the following conclusion.
Lemma 2 Ifbl-a>0,I<
2a +1 -4b° +«8/b(2a+1)2 +b2’ then H(x) <0,
Proof The discriminant of H(«x) is
A =4(b+2D)° (bl -a)” +
4(b+1)(bl-a)[a(b+2]) -1] =
41(bl —a) [4b1 + (46> =2a - 1)1 +
b —ab-b]

H(x)

Let
o(1) =4bl° + (46" =2a -1)L+b’ —ab-b (5)
which is considered as a quadratic polynomial of [
with the discriminant
A, =(4b" =2a-1)* =16b(b’ —ab -b) =
(2a+1)* +86> >0
The roots of ¢(1) =0 are
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; _2a+l —4b0> +/ (2a +1)° +8b°

te 8b

] _2a+1-4b" -/ (2a+1)” +8b’

z 8b

Now bl —a >0, [ >0, then b >0. Thus - (b +1) -
(bl -—a) <0.1If

I< 2a+1 -4b> +/(2a +1)* +8b°
8b
<0. Thus we obtain that H(x)

then (/) <0, and A,

=<0.
Remark 1 For the condition | <
2a+1 -4b> +/ (2a +1)* +8b°

Sh to be satisfied, we

need the condition

2a+1 -4b> +/(2a +1)* +8b° >0 b>0

which is equivalent to that of 5> <a +1.
4 Main Conclusions

Theorem 1 For bl —a >0, 0 <a <1/5, system
(2) possesses two limit cycles surrounding the origin
under certain additional conditions.

Proof It is proved that if W, W, >0, W,W, >0,
there is no limit cycles around O (see Ref. [5]). We
now discuss the case of W, W, <0, W,W, <0.

Firstly, let W, =0, then [ =a(b +2/) and

W.W,=2a"l(5a-1)(bl—a)’ <0
which is equivalent to a(5a¢ -1) <0 or 0 <a <1/5.

Starting from system (2) with O being a third
order weak focus, we have a =1/5 and [ - (b +21)/5
=0,i.e.b=31. Then W, =W, =0 and W, =2a" (bl -
a) #0. For bl —a >0 (or bl —a <0), O is unstable (or
stable). To change its stability, let a <1/5 with 1/5 -
a small enough and W, =0 still satisfied, then W, <0
(or >0) and there is an unstable (or a stable) LC [,
created from 0(0, 0).

Again, let b decrease (or increase) a little such
that W, =l —a(b +2l) >0 (or <0) and L, still exists,
then the stability of O (0, 0) changes again to get a
second LC L, CL, with L, stable (or unstable).

The conclusion of theorem 1 is obtained.

In the following, we are going to prove that there
are at most two limit cycles.

Theorem 2 Under the conditions: bl —a >0, 0

1 2a +1 -4b” +/ (2a +1 +8b2
<a < 5 0<lI< 2b )
system (2) has at most two LCs surrounding the
origin.

Proof Let L, CL, be any two-neighboured LCs
around O (0, 0) of system (4), which are both

obviously clockwise. For i =1, 2, we have
ﬁidiv(4)dt - 3€L —xf(x)de =

£x)
b, 2+ e (6)

Lemma 1 implies that g (x) +f(x)u %0 on the
existential domain of the limit cycles around O(0, 0),
and then g(x) +f(x)u >0 (because g(0) +f(0)u =

fx)
g(x) +f(x)u
continuously differentiable function for (x, u) e D,
where D is an annular region bounded by L, and L,,

1 > 0). Therefore, we know that a

see Fig.3.
Ly

D

Fig.3 Annular region bounded by L, and L,

Changing the orientation of L, and applying the
Green’s formula to region D, we obtain

S
ﬁ] ﬁz g(x) +f(x)u

ﬂax(g< >f(+f>f<x>u)d"d” -

ﬂ H(x)
b (g(x) +f(x)u)’

The right hand side of Eq.(7) is negative due to
lemma 2. For the two LCs obtained in theorem 1, L, is
unstable and L, stable, then the left hand side of
Eq.(7) is also negative and there is no contradiction.
But if there are three LCs around O (0, 0), then we
can choose the two-neighboured LCs with outside one
stable (at least inner stable) and inside one unstable
(at least outer unstable). For this case, we get that the
left hand side of Eq.(7) is greater than or equal to
zero, and obtain a contradiction.

Theorem 2 is proved.

Remark 2  For the case bl — a <0, by starting
from a stable weak focus of order three, then the
stabilities of the LCs obtained in theorem 1 change to
the opposite. Thus, to satisfy the proof in theorem 2, it
requires the conclusion that H (x) =0, and it is
sufficient that ¢ (/) =0 in Eq.(5), and so that A, <0.

We look at the figures of ¢ (), a quadratic

dxdu (7)

polynomial of [ with at least one negative zero point
l,, then we can get the following conclusions.
Lemma 3 ¢ (/) =0 if one of the following
conditions is satisfied:
1)b>0, bl-a<0, b>’=a+1;
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2) b >0, bl —a<0, b><a+1 and [ = 2a +1 -4b* +/(2a +1)* +8b°

S5 l =
2a+1 -4b> +/(2a +1)° +8b° 8b
8b ’ 2a+1-4b" —/(2a +1)° +85°
3)b<0 (then bl —a <0), b>° <a +1 and [ < 3h :
2a+1 -4b> +/(2a +1)* +8b° Proof From remark 1, it is enough to see Fig.4.
8b ’ By the above conclusions, we have the following
4)y b < 0, b > a + 1 and theorem.
A o(D) | (1) A o(D) A o(0)
\ / . \ 0 / - / \ - SN
~_"1,]0 = ~n [ 0] 8\ — oYL, 12\71
(a) (b) (e) (d)
Fig4 o (I) graphs
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