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Abstract: An approximate approach of querying between heterogeneous ontology-based information systems

based on an association matrix is proposed. First, the association matrix is defined to describe relations

between concepts in two ontologies. Then, a method of rewriting queries based on the association matrix is

presented to solve the ontology heterogeneity problem. It rewrites the queries in one ontology to approximate

queries in another ontology based on the subsumption relations between concepts. The method also uses

vectors to represent queries, and then computes the vectors with the association matrix; the disjoint relations

between concepts can be considered by the results. It can get better approximations than the methods currently

in use, which do not consider disjoint relations. The method can be processed by machines automatically. It is

simple to implement and expected to run quite fast.
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Information retrieval and filtering!"' is one of the
most basic and important services on the web. Ontolo-
gy-based information systems on the semantic web
can retrieval pages that refer to precise concepts but
not ambiguous keywords, and validate them using
logical reasoning'”'. This can greatly increase the pre-
cision and recall of queries compared with current
techniques. However, ontologies face heterogeneity
problems'” . Different systems may use different on-
tologies, and cannot access each other directly. The
queries have to be rewritten to suit the specified sys-
tem'*'. The rewriting process replaces concept names
in the query by concept names in another ontology.
Since often no perfectly corresponding ontology ex-
ists, it requires approximation mechanisms. One ap-
proach of rewriting queries is based on approximate
query mapping"”’.

The approximate information filtering frame-
work'® has been proposed to deal with query in heter-
ogeneous ontology-based information sources. The
framework dealing with class and relation hierarchies
and both the maximally and minimally contained re-
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formulation has been presented in Ref. [ 7]. The
framework is based on the assumption that one-to-one
subsumption relations between ontologies are always
known, which is overly optimistic. Moreover, it does
not consider disjointed relations. This paper uses an
association matrix to describe relations between con-
cepts in two different ontologies, including one-to-one
subsumption relations. Then an approximate querying
process can be processed automatically. The disjoint
relations between concepts are also considered. It leads
to more accurate approximations than the methods
currently in use.

1 Background

Concept-based information retrieval is the simp-
lest and the most important part of ontology-based in-
formation systems'”’. In a concept-based information
source, the pages, documents or any other items of in-
formation are classified according to an ontology.
Then the source can answer users’ queries expressed
according to the ontology.

Definition 1 An information source is a set of
information items. If every information item in an in-
formation source S has been classified into one or
more concepts in an ontology O, i. e. the information
items are individuals in O, then § is called a concept-
based information source with respect to ontology O.
Let the concepts in ontology O form the set C = {¢,,
Cys..., C, }. In each S, we introduce an interpretation
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function: c; means the set of information items that be-
long to concept c;,.

Definition 2 A concept query is a Boolean ex-
pression on the set of concept names in an ontology,
and is called a query for short in this paper. The que-
ries in concept set C and their answers in information
source S can be defined as

(D Every concept name in C is a query, the an-
swer to the query c, is c};

@ If e is a query, then — e is also a query, the
answer to the query — e is the information items in §
that are not in e';

@ If e, and e, are queries, then e, Ae,, e, \V e,
are queries, the answers are (e, A\ e,)' = e} N e},
(e, Ve)' =e Uel.

There are heterogeneity problems when the infor-
mation sources use different ontologies. Different on-
tologies do not have the same concept hierarchy.
When query users and information sources use differ-
ent ontologies, the query should be rewritten by repla-
cing the concept names in the user’s ontology by the
concept names in the system’s ontology'* . In general,
it is not possible to find exactly corresponding queries
in a different ontology, but we can approximately re-
write using the subsumption relations between con-
cepts in different ontologies'”' .

In the approximate information filtering frame-
work, the key problem is finding approximations of

6
each concept'®

. Let S, and S, be two information
sources using ontologies O, and O,, respectively; let
the set of concepts in O, be C, and the set of concepts
in O, be C,; let ¢, d be concepts. Here ¢ C d represents
that ¢ is a subclass of d, and ¢ C d means that ¢ is a
proper subclass of d, i. e. ¢ and d are not equivalent.
In any information source, ¢ C d—c' Cd'. The direct
superclasses and subclasses of a concept are useful for
finding its approximations'” .

Definition 3 Let ¢ be a concept in C,, then the
set of concepts lub(c, C,) is called the least upper
bounds of ¢ in C,, if for any concept d € C, such that
¢ Cd and there is no d’ in C, such that cCd’' Cd, it is
true that d e lub(c, C,).

Definition 4 Let ¢ be a concept in C,, then the
set of concepts glb(c, C,) is called the greatest lower
bounds of ¢ in C,, if for any concept d e C, such that
dCc and there is no d’ in C, such that dCd' Cec, it is
true that d e glb(c, C,).

Using the least upper bounds and the greatest
lower bounds, upper approximations and lower ap-
defined as

. . 6
proximations of concept'® can be

va(c,C,) = A

d;elub(c, Cy

)d,. and la(¢,C,) = V  d,, re-

die glb(c, Cy)
spectively. Obviously, la(c¢, C,) € c Cua(c, C,).
Therefore, the upper and lower approximations can
ensure the correctness or the completeness of the quer-
ying respectively, i. e. either the precise or recall of
the results can be 100%'".

The subsumption relations between concepts play
important parts in the quality of approximate. How to
find these relations between concepts in different on-
tologies automatically is an unsolved problem. Most
methods leave this problem to the integration of ontol-
ogies, which is known as a very difficult task'™'.
Learning methods can be used to automatically dis-
cover relations between concepts in different ontolo-
gies'”’. They use machine-learning methods based on
the similarity measures between concepts to find map-
pings between concepts. The methods can only find
one-to-one mappings; when handling no equivalent
concepts and ambiguous concepts, it is impossible to
determine an accurate match. It cannot find all the
subclasses and the superclasses of a concept either.
This paper uses an association matrix to automatically
find all the subsumption relations.

Current methods in use only focus on the sub-
sumption relations. The quality of the approximation
may not be acceptable. In the worst case, the approxi-
mations always return an empty set or a full set as the

result'”

. We consider the disjoint relations between
concepts in our method to make the approximation

more accurate.
2 Association Matrix

If there is a set of instances already categorized
in both ontologies, we can generate an association ma-
trix to learn the relations.

Definition 5 Let C, and C, be the sets of con-
cepts of two ontologies O, and O,. I is a set of in-
stances which have been already categorized in both
C, and C,. The association matrix M of O, and O, is
based on a mapping: (C,U{T}) x (C,U{T})—N,
where N is the set of non-negative integers, 7" is a top
concept containing all the instances.

The size of M is ( \Cl | +1) x( \CQ\ +1) and it
can be calculated as follows: let A be a concept in C,,
B be a concept in C,. M[n(A)][n(B)] equals the
number of instances belonging to both A and B;
M[n(A)][n(T)] means the number of instances be-
longing to A; M[n(T)][n(B)] means the number of
instances belonging to B; M[n(T)][n(T)] is the total
number of instances; where n(c) is the unique serial
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number of each concept c: n(c,) #n(c,) if ¢,, c, are
concepts in the same ontology, and for any c,
n(c) #n(T).

Some ontologies have a large set of concepts,
which may make the matrix huge. We can comminute
them because they often follow common scientific
classifications. For example, most ontologies discrimi-
nate life-forms in animals, plants and other forms like
microorganisms. Then concepts in animals and plants
can be dealt with separately. We can build the associa-
tion matrix for each domain.

Definition 6 Let M be the association matrix of
C, and C,. It has two normalized transform matrices:
M, and M,. They satisfy:

M,[n(B)1[n(A)] :%{ZE%%ZE%

ML) In(B) ] =

where A is a concept in C, and B is a concept in C,.
M, [n(B)][n(A)] represents the probability of the in-
stances of B belonging to A. M,[n(A)][n(B)] is the
probability of the instances of A belonging to B.

The one-to-one subsumption relations between
ontologies can be easily found from M, and M,:
If M, [n(B)][n(A)] =1,then BCA
If M,[n(A)][n(B)] =1,then ACB

3  Query Using the Association Matrix

With the association matrix, we can simply com-
pute the upper and lower approximations of a concept

d, and V d,. But there is a
My 1Tn(dp] =1 Moln(dp][n(e)] =1

problem that not only the direct ones but all of the su-
perclasses and subclasses are contained in the expres-
sion. It makes the approximation of a concept contai-
ning too many concepts and hard to be processed. This
problem can be solved using the association matrix of
the ontology and itself; let M| be the association ma-
trix of C, and itself. From M, we can find all the su-
perclasses and subclasses of a concept in C,. We can
get M, in the same way for C,.

Here is a method to find the least upper bounds
of ¢ in C, using the association matrix: (I) Find out all
the concepts d, in C, such that M,[n(d,)][n(c)] =1
and they form a set ub(c, C,); (2 For any d;, d; in ub
(¢, C,) such that i#j, if M',[n(d,)][n(d)] =1,
then delete d; from ub(c, C,); B Do step 2 until
there is no d,, d_]. in ub(c, C,) such that i # j and
M;[n(d;)][n(d;)] =1. Then we can get lub(c, C,)
=ub(c, C,); @ If we get lub(c, C,) = ), let
lub(c, C,) ={T}.

The greatest lower bounds can also be found: (1)
Find out all the «concepts d; in C, that
M,[n(d,)][n(c)] =1 and they form a set Ib(c, C,);
@ For any d;, d; in Ib(c, C,) such that i # j, if
M;[n(d;)][n(d;)] =1, then delete d; from Ib (c,
C,); @ Do step (2) until there is no d,, d; in Ib(¢, C,)
such that i#j and M',[n(c;)][n(c;)] =1. Then we
can get glb(c, C,) =1b(c, C,).

Except for removing some redundant equivalent
members, the resulted lub(c, C,) and glb(c, C,) are
the same as the least upper bounds and the greatest
lower bounds defined in definitions 3 and 4. Then we
can compute la(c, C,) and va(c, C,). Let n be the
number of concepts in each ontology; the computation
complexity is no more than O(n’) to find approxima-
tions for all the concepts. This process only uses a
simple matrix calculation and can be processed offline
in advance.

The rewriting of a query requires that the original
query be transformed into negation normal form, i. e.
negations only apply to individual concept names but
not to compound expressions. It can be done using the
following two equations: — (e, Ae,) = — (e, Ve,)
and — (e, Ve,) =— (e, \e,).

If for every non-negated concept name c in the
query, we replace ¢ with lub(c, C,) ; for every negated
concept name c¢ in C,, we replace c¢ with the
glb(c, C,). Then the answer to the new query on C,
must also be the answer to the original query. The re-
writing ensures the correctness.

If for every non-negated concept name ¢ in C,,
we replace ¢ with glb(c, C,); for every negated con-
cept name c in C,, we replace ¢ with lub(c, C,). Then
the answers to the new query on C, must contain all
the answers to the original query. The rewriting en-
sures the completeness. Finally, the new queries on C,
can be answered by the target system.

The method can be processed automatically, and
is simple to implement. The computation complexity
is linear to the size of the query expression.

4 Considering Disjoint Relation

We can make the problem simpler by using vec-
tors to represent query expressions.

Definition 7 The concept vector of a query ex-
pression shows the probabilities of answers to this
query belonging to each concept in an ontology (It
does not have to be the same ontology that the query
expression is based on). If an instance a is in the re-
sults of query e, and the concept vector of e is v. And
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@ If v[n(c)] =1, a must be an instance of con-
cept c;

@ If v[n(c)] =0, a cannot be an instance of
concept ¢;

@ If0<v[n(c)] <1, a may be an instance of
concept c.

If e is a concept ¢ in C,, we can define a vector

, . 1 i=n(c)
viecotn={y 20

But it does not satisfy the definition when not all
other concepts are disjoint with c. Especially, for any
concept d that is superclass of c, if v is a concept vec-
tor of query c, it will be expected to have v[n(d)] =
1. We can calculate the concept vector of a concept
name ¢ in C;: v(c, C,) =v'(c, C,) M}, where M| is
the normalized transform matrix of C, and the opera-
tor is defined as (vM) [i] = max;(v[j][j1M[i]). It is
a concept vector of ¢ in C,.

The concept vector of ¢ based on C, can be cal-
culated by v(c, C,) =v'(c, C,) M,. If v is a concept
vector of ¢ based on C;, d is a concept in C;, it must
be true that cCd <v(c, C))[n(d)] =1. Similarly, M,
v'(c,C,)",M,v'(c, C,)" can show the subclasses of
cin C, and C,.

Considering disjoint relations will make the ap-
proximation more accurate. However, it may be that
too many disjoint relations are real cases, and most of
them are redundant. Using the concept vector, we pro-
pose a method to check which concepts need to be ne-
gated explicitly when rewriting ¢ in C,:

(D Get the concept vector v of ¢ in C, by
v(c,C)) =v'(c, C,))M|.

) Find the least upper bounds lub( ¢, C,) of c in
C,.

() Calculate a vector v, =v,, M}, where

) 1 Fe(celub(e, C) Ni=n(c))

vl ={

0 otherwise

@) Compare v(c, C,) and v,,, find all the con-
cepts d in C, such that v (¢, C,) [n(d)] =0,
viwl7(d)] >0. Then form them into a new set named
neg.v(c, C,)[n(d)] =0 means no answer is in con-
cept d, v,,[n(d)] >0 means the upper approximation
is not implicated, so d needs to be negated explicitly.

(5 Then simplify neg: For any d,, d; € neg, if
M;[n(d)][n(d)] =1, i.e.cC - d;, C - d,, then
delete d; from neg; do this until there is no d;, d; e neg
such that M',[n(d))1[n(d)] =1.

(6 The new upper approximation of ¢ in C, is
d N N\ —d

nua( c, CZ) = i
djelub(c, Cy) d/- € neg

It is more accurate than the original upper ap-
proximation, since it has ¢ Cnua(c, C,) Cua(c, C,).
The recall of the new upper approximation is still
100% , but the precision is increased. Let n be the
number of concepts in each ontology, the computation
complexity is O(n’) to improve approximations of all
the concepts. This process also only uses simple ma-
trix calculation and can be processed offline in ad-
vance.

The lower approximation can be modified in a
familiar way using M,v’'(c, Cl)T and glb(c, C,). The
method needs to be improved in the future.

5 Conclusion

This paper proposes an approximate approach of
querying between heterogeneous ontology-based infor-
mation systems based on an association matrix. The
association matrix and its normalized form can show
the relations between concepts in ontologies. The asso-
ciation matrix is easy to generate.

We introduce the method that finds the approxi-
mations of concepts in another ontology using an as-
sociation matrix. Then it rewrites the queries in one
ontology to approximate queries in another ontology
based on the subsumption relations between concepts
in different ontologies. And the disjoint relations be-
tween concepts can be considered to make the approx-
imation more accurate. It is simple to implement and
expected to run quite fast.

The concept vector of the negation, conjunction
and disjunction of concept vectors can be carefully de-
fined. Then many query expressions can be simplified
using association matrix before rewriting. This will
make the query process more efficient. How the asso-
ciation matrix method can be used when facing multi-
ple ontologies is for future work.
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