Journal of Southeast University (English Edition)

Vol.21, No.1, pp.6 —10 Mar. 2005

ISSN 1003—7985

Randomized scheduling algorithm for input-queued switches

Wu Jun

Luo Junzhou

(Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract: The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed. We

observe that if the current scheduling decision is a maximum weighted matching (MWM), the MWM for the

next slot mostly falls in those matchings whose weight is closed to the current MWM. Using this heuristic, a

novel randomized algorithm for IQ scheduling, named genetic algorithm-like scheduling algorithm (GALSA),

is proposed. Evolutionary strategy is used for choosing sampling points in GALSA. GALSA works with only

O(N) samples which means that GALSA has lower complexity than the famous randomized scheduling

algorithm, APSARA. Simulation results show that the delay performance of GALSA is quite competitive with

respect to that of APSARA.

Key words: switches; input-queued; randomized algorithm

Traditional switching fabrics assumed an output-
queued (OQ) architecture. Output-queued switches
are appealing because they have optimal delay-
throughput performance for all traffic distributions.
However, OQ switches are not scalable for the N-
times speed-up factor. WWW and other multimedia
applications have dramatically increased and will con-
tinue to increase the traffic over the Internet, which
demands high performance and scalable switches. As a
result, input-queued (IQ) switch architectures have re-
cently received increasing attention.

With respect to OQ architectures, IQ has the ad-
vantage that both the switching fabric and input
queues can work at the line rate. Thus IQ is more
scalable than OQ. However, IQ has a critical draw-
back: the throughput is limited to 58. 6% '" due to the
notorious head-of-line (HoL) blocking phenomena.

To overcome the drawback, virtual output queued
(VOQ) technology is adopted in the IQ switch de-
signs. In VOQ switches, each input maintains N
queues, one for each output. By using VOQ, HOL can
be eliminated because all cell-switching probabilities
in one input port are presented on heads of queues.
Therefore, VOQ switches with elaborate designed
schedulers can achieve 100% throughput. It has been
proved that by using some maximum weight matching
(MWM) algorithms (such as LQF, LPF) ">’ 100%
throughput can be achieved for any i. i. d arrivals.

Received 2004-06-16.

Foundation items: The National Basic Research Program of China
(973 Program) (No. G1998030405), the Foundation of Excellent
Doctoral Dissertation of Southeast University (No. YBJJ0408) .
Biographies: Wu Jun (1970—), male, graduate; Luo Junzhou (corre-
sponding author) , male, doctor, professor, jluo@ seu. edu. cn.

However, the MWM algorithm has a complexity
of O(N’); even the MNCM algorithm'* proposed re-
cently also had a complexity O(N*”). It is too high to
be practical.

Over the past few years, considerable work has
been done in this area. A number of practical algo-
rithms have been proposed in the literature. iSLIP'”!
and FIRM'” are round-robin based algorithms which
use maximal matching instead of maximum matching.
They have lower complexity than MWM and can be
executed in parallel. But they suffer poor performance
under nonuniform traffic. Even EDRR'", a modified
round-robin algorithm, is not satisfactory under nonu-
niform arrivals.

Randomized algorithms are more suitable for
high aggregate bandwidth IQ scheduling due to their
intrinsic parallelism. Tassiulas proposed a simple ran-
domized IQ scheduling algorithm' (we name it
TRA) and proved that the algorithm can achieve
100% throughput under any i. i. d arrivals. However,
TRA needs hardware to support random matching,
which is difficult to implement. Giaccone, et al. "’ pro-
posed a derandomized TRA by using Hamiltonian walk
instead of random matching. But the performance of
TRA is poor in terms of delay-throughput. Giaccone, et
al. proposed two other randomized algorithms, AP-
SARA" and SERENA'"”. They perform much better
than iSLIP for nonuniform traffic models. However,
APSARA needs O(N’) samples to achieve good per-
formance. It is too expensive for hardware implementa-
tion. SERENA has O(NlogN) complexity but can hard-
ly be executed in parallel. In this paper, we propose a
novel randomized algorithm named genetic algorithm-
like scheduling algorithm (GALSA). Simulation results

Randomized scheduling algorithm for input-queued switches 7

show that by computing only O(N) samples GALSA
outperforms previous major algorithms.

1 Background Knowledge

The IQ scheduling problem for an N x N 1Q
switch can be viewed as a bipartite graph matching
problem, where each part contains N nodes, and one
part corresponds to the input ports, while the second
part corresponds to the output ports. The requests from
input ports to corresponding output ports form the ed-
ges of the bipartite graph. A matching can be repre-
sented as a matrix § = [S;], where each column or
row has exactly one element 1 and all others Os. S; =1
means that input port i is matched with output port ;.
Obviously, S can be represented equivalently as a per-
mutation 77 via the equation 7r(i) =j iff §; =1. Let Q;
(7) denote the queue length of VOQ, at time 7. The
weight of matching S at time ¢ is defined as W(S, r)

= 2 S; Q,;(1). §7 (1) is used to denote the corre-
i

sponding maximum weight matching at time ¢.
There are N! matchings of an N x N switch. The
N! matchings can be organized as a complete graph,
with each node corresponding to a distinct matching.
Let Z(#) denote the status of Hamiltonian walk on this
graph at time ¢ (refer to Ref. [1] for more details).
The optimal scheduling algorithm must work on the
whole state space. Randomized algorithms, unlike the
optimal algorithm such as MWM, compute a few sam-
ples rather than search the whole state space. TRA is a
very simple example. TRA determines the matching at
time ¢ + 1 by the following equation:
S(t+1) =arg max W(S,r+1) (1)

Se{S(H,R(t+1)}
where R(t + 1) is chosen uniformly at random from
the whole state space. TRA achieves 100% throughput
under any i.i.d arrival by evaluating only two sam-
ples, but it suffers from poor performance in terms of
delay-throughput.

The performance of randomized algorithms is de-
termined by sampling. To acquire good samples, the
notation, neighbor of a matching, was introduced in
Ref. [1]. A matching S’ is called a neighbor of § iff
S’ has only two input-output pairs different from S.
The set of all neighbors of a matching S is denoted
N(S). Because at most one cell can arrive at or leave
from one input port per slot, the VOQ length changes
very little during successive time slots. It hints that
S*(t+1) likely exists in N(S*(¢)). This observation
leads to APSARA. The matching of APSARA at time
t+1 is given by

S(t+1):argsrgrgll%)il)W(S’,t+l) (2)

where M(t+1) =N(S(#)) US(r) UZ(t +1). The num-

ber of samples used by APSARA is O(N’). Computing
the weights of all O(N) neighbors requires a lot of
space in hardware for large values of N.

To overcome this, a tradeoff between perform-
ance and complexity was made in Ref. [1]. Let
Ng(S(1)) denote K elements picked uniformly at ran-
dom from the set N(S(¢)). The S(¢+1) formula for
APSARA-R(K) is similar to Eq. (2), with replacing
N(S(1)) by N (S(t)). In this paper we especially
use APSARA-R to replace APSARA-R(N), where N
is the size of switches.

From TRA and APSARA, it is easy to see that:
(D Randomized algorithms for IQ scheduling are sim-
ple to implement; (2) Randomized algorithms are apt
to be executed in parallel because the evaluation of all
samples can be done concurrently. Therefore, the ran-
domized algorithm is a promising technique for high
aggregated bandwidth IQ scheduling, which is chal-
lenging because there is either too little time or too
much work to do.

2 GA-Like Scheduling Algorithm

As mentioned in section 1, sampling is a key step
of randomized algorithms for IQ scheduling. APSARA
is somewhat successful because its sampling method
benefits from “memory feature” of the high-speed
switch scheduling problem. The so-called memory fea-
ture is the fact that the VOQ length changes very little
during successive time slots. Let M(S(t), d) denote
the set of matchings whose element S’(¢) satisfies the
following formula:

[W(S(D), 1) -W(S'(1), 1) |<d (3)
In fact, the memory feature tells us that picking sam-
ples from M(S(t), d) for some small number d can
get S$”(t+1) with bigger probability than picking the
same number samples from the whole state space.
Thus, the memory feature can be used for decreasing
the number of samples needed by randomized algo-
rithms for IQ scheduling.

Given a number d, elements of N(S(t)) belong
to M(S(t), d), but perhaps there are some elements of
M(S(t),d) which do not belong to N(S(?)). For ex-
ample, let the VOQ state of a 4 x4 switch at time 7 + 1
and the matching at time ¢ be as follows:

34 0 0 100 0
03 4 0 0100
VOR=\g o 3 4} 5D =g 0 1 o
300 3 000 1

Considering the MWM matching at time ¢ + 1, S* =
{m(1) =2, 7(2) =3, 7(3) =4, 7(4) =1}. It belongs
to M(S(7),3) but not in N(S(#)). This implies that
the sampling method used by APSARA may miss the

8 Wu Jun, and Luo Junzhou

MWM. Just for this reason, APSARA needs many
samples to achieve good performance.

However, direct computing M(S(¢), d) from (3)
is very difficult. Meanwhile, the number d is also dif-
ficult to determine. If d is too small, MWM will often
be missed, and if d is too large there will be too many
samples. To get samples close to M(S(t), d), we pro-
pose an adaptive algorithm by using the evolutionary
strategy. Before presenting the algorithm we introduce
some notations used by the algorithm. Let M (¢) de-
note the set of K matchings at time ¢, which are initial-
ly chosen arbitrarily from the whole state space. Let
N,(My(t)) denote the matching set that is given by
the following formula:

N(M(D) = U N/(S) (4)
SeMg(n

where N,(S) denotes a matching picked uniformly at
random from all neighbors of S. Let M (¢) denote
M (1) UN,(M, (1)), obviously N,(M,(?)) has K ele-
ments and the cardinality of M(¢) is 2K.

Our algorithm is as follows:

(D Determine N, (M, (t+1)) by Eq. (4), and
then determine M(z+1).

@) For every S € M(t +1), compute the weight
W(S, t+1).

@ S(t) =arg max W(S',1).

S'eM(t+1)

@) Evolve the M, (t+1) to M (t+2). Namely,
for every S e My (¢t) and its counterpart N,(S) which
belongs to N,(Mg(t)),if W(S,t) <W(N,(S), 1), re-
place S with N,(S) in M, (t+2).

The output of the algorithm at the time slot ¢ is
S(t) which is used for configuring the cross-bar
switch. Step (@) of the algorithm is the evolutionary
strategy. Elements in M(¢) may be very different at
time 0, but after some time ¢, or say, by ¢ times evolu-
tion, the weight of element in M, (t) is close to
W(S(1),t). For similar consideration of APSARA,
the weight of elements in N, (M (t+1)) is also close
to W(S(?),t). Thus, we can get 2K samples which
belong to M(S(?),d) for some number d though we
do not know d. In terms of the memory feature, the
heaviest matching in M, (S (t)) is very likely an
S*(t+1). It means that our algorithm has good de-
lay-throughput performance, which is verified by the
simulation results in section 4. Because the evolution-
ary strategy is similar to the genetic algorithm, we call
the algorithm as the genetic algorithm-like scheduling
algorithm (GALSA). In the rest of this paper, we will
use GALSA (L) to denote the GALSA with L ele-
ments in M(¢t) or L =2K. K is an adjustable parameter
of the algorithm, which is often determined by hard-
ware space constraints. Generally speaking, making L

equal to the number of input ports of a switch is sug-
gested for moderate size switches.

3 Complexity and Implementation

The main computation of GALSA is step 3. If
the weight computation of 2K elements in M, (f) exe-
cutes concurrently, GALSA needs O(1) weight com-
puting and O(1) arbitration, which is the same as AP-
SARA-R(2K). The arbitration is a procedure that
creates a tournament tree of 2K numbers correspond-
ing to 2K weights of elements in M (t) as shown in
Fig. 1. Obviously, step (4) does not increase any com-
plexity of the algorithm, because the information used
by step @) is a by-product of the arbitration. We only
need to make a little modification to the arbitrator.

[49] [97] [76] 49 |

WANANA

490 [38|65 | 97| [76]13][27]49 |

Fig.1 An example of a tournament tree with eight leaf
nodes (The root of the tree is the output of the arbitration.
And the output of the first comparison can be used for step
@ of GALSA)

Fig. 2 gives a schematic scheduler for GALSA.
The scheduler contains an arbiter and K units. For ev-
ery matching in M, (¢), there is a corresponding unit.
Every unit has two weight calculators, one for the
matching S in M (#) and the other for N,(S). K units
work concurrently requiring 2K weight calculators

which also work in parallel.

Yy R

Arbiter /4—

i

Fig.2 A schematic scheduler for implementation of GALSA

4 Simulation Results

Before presenting the performance of GALSA,
we outline the simulation setting. The simulation set-
ting here is similar to the one used in Ref. [11].

The switch used in our simulation is a 32 x 32
switch. We assume that all input/output line rates are
equal, and that only unicast traffic flows are present.
In the IQ switch, each input queue VOQ, has finite
length 2 x 10°. When a cell directed to output j arrives

Randomized scheduling algorithm for input-queued switches 9

at input 7, if queue VOQ; is full, the cell is dropped.
No buffer sharing among queues is allowed.

Traffic Scenarios All inputs are equally loaded
on a normalized scale, and p € (0, 1) denotes the normal-
ized load. The arrival process is Bernoulli i. i. d.

1) Uniform scenario In this case A; =p/NV1i,j,
where A; denotes the cell rate which arrives at input
port i and directs to output j.

2) Diagonal scenario In this case A; = 2p/3
Vi, Ay, =p/3,and A, =0 for all other i and j. This
is a very skewed loading, in the sense that input i has
cells only for outputs i and i + 1. We use this traffic
to evaluate the performance of GALSA under nonuni-
form arrivals.

Performance Measures We compare the queue
length induced by different algorithms, the delay can be
computed using Little’s Law. Here the queue length is
the sum of all VOQ lengths in one input port. For
every algorithm we run 10° time slots per load.

Fig. 3 compares the average queue lengths in-
duced by APSARA, GALSA and SERENA under di-
agonal traffic. As can be seen, GALSA (32) outper-
forms APSARA-R in all loads. And GALSA(32) per-
forms better than APSARA in low loads and high
loads. SERENA is competitive with APSARA for low
loads. However, the predominance of SERENA does
not exist when it compares with GALSA.

10*
— o — APSARA-R ;
16 F — = — SERENA A
-- & - - GALSA(32) /,é'
E" 102 F— & —APSARA A5
=) _— — E____E,__._A‘
% W[o5 o -
= i A -
10° T
oL
10— 1 | 1 1 | | |]

1 !
10 20 30 40 50 60 70 8 90 100
Normalized load/ %

Fig.3 Mean IQ length for randomized algorithms under
diagonal traffic

The cell delay of SERENA is a little smaller than
the one of GALSA only in the loads between (0. 8,
0.9).In Fig. 4 we compare the performance of AP-
SARA with GALSA more extensively. GALSA with
64 samples performs better than APSARA in almost
all loads, where APSARA needs () =496 samples.
GALSA(L) outperforms APSARA(L) with other val-
ue of L. This shows that evolutionary strategy is useful
for designing randomized algorithms for 1Q scheduling
problem.

Fig. 5 compares the performance of iSLIP, EDRR,
FIRM and GALSA under diagonal traffic. Although
EDRR improves a little in terms of delay-throughput

07, Garsa(ed) £
—=— GALSA(16) 4
10°[.- o - APSARA-R(64)
£ - - - - APSARA-R(16) -
§ 10 "~ APSARA Ny
o - L P
) RPN "
o--R*"
= L - A"
100477
1 1 1 1 1 1 1]

_ 1
10110 20 30 40 50 60 70 80 90 100
Normalized load/ %
Fig.4 Mean IQ length for APSARA-R(L) and GALSA(L)

with different parameters L under diagonal traffic

on iSLIP and FIRM, it also suffers from big delay in
high load when compared with GALSA, SERENA and
APSARA. This maybe implies that approximate MWM
algorithms are better than approximate maximal algo-
rithms for nonuniform arrivals.

10°
— o — EDRR
105 -
0 — & — iSLIP
€ 10'F —s— FIRM -
& 10° - -- > -- GAISA(32) . X
S 1 [.x
§ 10
=
10°]
101
_2 1 | | 1 1 | 1 1]
10710 20 30 40 50 60 70 80 90 100

Normalized load/ %
Fig.5 Mean IQ length for RR algorithms and GALSA

under diagonal traffic

Finally, we compare the performance of the algo-
rithms referred in this paper under uniform traffic (see
Fig. 6). All these algorithms are good in terms of de-
lay. The best one is SERENA, because it merges the
arrival pattern and the matching of last slot, which
takes merits from both randomized algorithms and de-
terministic algorithms. However, it is difficult to im-
plement in parallel, which limits its applications in
very high bandwidth switches. GALSA performs
based algorithms in high load but round-robin based
better than round-robin algorithms are a little better
than our algorithm in lower load. Because APSARA
samples in neighbors of last matching are limited in

L —e— iSLIP 4
--o--- APSARA :

r —=— FIRM
—m=-— GALSA(32)
—o-— SERENA

Mean 1Q length
- 288858888

—e s -;h"i; Y‘{]
10 20 30 40 50 60 70 80 90 100
Normalized load/ %

Fig.6 Mean IQ length for uniform traffic

10

Wu Jun, and Luo Junzhou

very local area, APSARA performs the worst in all
these algorithms under uniform i. i. d traffic.

5

Conclusion

This paper has proposed a new randomized algo-

rithm for the high bandwidth 1Q scheduling problem.
The main idea of the algorithm is to use evolutionary

strategy and the memory feature. Simulation results
show that the sampling method of the new algorithm
overcomes the drawback of APSARA, which makes
GALSA outperform some major previous algorithms
presented in the literature.

[1]

(2]

[3]

[4]

References

Karol M J, Hluchyj M, Morgan S. Input versus output
queueing on a space-division packet switch [J]. IEEE
Transactions on Communications, 1987,35(12): 1347 —
1356.

Mckeown N, Mekkittikul A, Anantharam V, et al. Achie-
ving 100% throughput in an input-queued switch [J].
IEEE Transactions on Communications, 1999, 47 (8):
1260 —1267.

Mekkittikul A, Mckeown N. A practical scheduling algo-
rithm to achieve 100% throughput in input-queued swit-
ches[A]. In: Guerin R, ed. Proceedings of the IEEE IN-
FOCOM [C]. San Francisco: IEEE Computer Society
Press, 1998. 792 —799.

Tabatabaee V, Tassiulas L. MNCM a new class of efficient
scheduling algorithms for input buffered switches with no

[5]

[6]

(7]

[8]

[9]

[10]

[11]

speedup[A]. In: Matta I, ed. Proceedings of the IEEE IN-
FOCOM([C]. San Francisco: IEEE Communications Soci-
ety, 2003. 1406 — 1413.

McKeown N. The iSLIP scheduling algorithm for input-
queued switches [J]. IEEE Transactions on Networking,
1999,7(2):188 —201.

Serpanos D N, Antoniadis P I. FIRM: a class of distributed
scheduling algorithms for high-speed ATM switches with
multiple input queues[A]. In: Katzela I, ed. Proceedings
of the IEEE INFOCOM[C]. Tel Aviv: IEEE Communica-
tions Society, 2000. 548 —555.
Li Y, Panwar S, Chao H J. The dual round robin matching
switch with exhaustive service[A]. In: Gunner C, ed. Pro-
ceedings of IEEE Workshop on High Performance Switc-
hing and Routing [C]. Kobe, Japan: IEEE Communica-
tions Society, 2002. 58 —63.

Tassiulas L. Linear complexity algorithms for maximum
throughput in radio networks and input queued switches
[A]. In: Guerin R, ed. Proceedings of the IEEE INFO-
COM [C]. San Francisco: IEEE Computer Society Press,
1998. 533 —539.
Giaccone P, Shah D, Prabhakar B. An implementable par-
allel scheduler for input-queued switches[J]. IEEE Mi-
cro, 2002,22(1):19 - 25.

Shah D, Giaccone P, Prabhakar B. An efficient random-
ized algorithm for input-queued switch scheduling [J].
IEEE Micro, 2002,22(1):10 - 18.

Marsan M A, Bianco A, Giaccone P, et al. Packet schedu-
ling in input-queued cell-based switches[A]. In: Ammar
M, ed. Proceedings of the IEEE INFOCOM|[C]. Anchor-
age: IEEE Communications Society, 2001. 1085 — 1094.

BN\ BA 5 IR B —FP BE AL A EH A

7 EH
(R RFHIAAEL TR E, B 210096)

A= 4

= B

FWE: T NTAT) KPR B S ok 04 BRAE 5]
RERRE

AT T o7, 35 B B T HATAD 693810450, & 37 B B 49
AT KRAAL, A 4RI XA 5 K AE AR 64 T8 BeAf A F AN BE R B i R

B 69 AF SR

uﬁk%%ﬁﬁﬁkﬂﬁﬂﬁuﬂfﬁﬁiﬁﬁT*ﬁ%%%ﬂﬁﬁ“%GMﬁAGMﬁAﬂmﬁ%

Rk R RIE L A AN IR e R
KA T IUA FALH % APSARA. H 45 f2
KEEIFE: AL NTAD) ALE &
FhE4S RS TP301

B A AR AA 4 I AL, 5. GALSA fLk BT BAEE2 O(N), Bt 5 2t
E R % 0] GALSA #93EiR M4k l5 APSARA 4 £.

