Journal of Southeast University ( English Edition)

Vol.21, No.1, pp.24 -28 Mar. 2005

ISSN 1003—7985
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Abstract: In order to achieve higher accuracy in nonlinear/non-Gaussian state estimation, this paper proposes

a new unscented Kalman filter (UKF). It uses a deterministic sampling approach. We choose the unscented

transformation (UT) scaling parameters o =0. 85,8 =2, =0 to construct 2n + 1 sigma points. These sigma

points completely capture the mean and covariance of the Gaussian random variables of the nonlinear system

Y, = F(X,). Simulation results show that the posterior mean and covariance of the sigma points can achieve

the accuracy of the third-order Taylor series expansion after having propagated through the true nonlinear
system Y, = F (X,). Extended Kalman filter ( EKF) only can achieve the first-order accuracy. The
computational complexity of UKF is the same level as that of EKF. UKF can yield better performance and

higher accuracy than EKF.
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Extended Kalman filter (EKF) is probably the
most common and popular tool to deal with nonlinear
estimation problems. It is based on and limited by
model linearization and Gaussian hypothesis. EKF
may cause more errors for the nonlinear system while
estimating system state and its variance. Moreover, the
linearization may lead to divergence of filtering
process. This paper introduces a new approach to opti-
mal nonlinear filter named unscented Kalman filter
(UKF). The main feature of UKF is a deterministic
sampling approach. This method uses a minimal set of
carefully chosen sample points. These sample points
completely capture the true mean and covariance of
the variable. When the sample points propagate
through the nonlinear system, the sample points can
accurately capture the posterior mean and covariance
to the third-order Taylor series expansion. EKF only
can obtain the accuracy up to the first order.

1 Extended Kalman Filter

Extended Kalman filter has become a standard
technique used in nonlinear estimation. It includes
state estimation of a nonlinear dynamic system, pa-
rameters estimation for nonlinear system identification
and dual estimation where both states and parameters
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are estimated simultaneously.
The equations of the general nonlinear system
can be described as follows'":
X =X, W_, k-1 (D
Z, =X,V k) (2)
where X, is the unobserved state of the system; Z, is
the observed measurement signal; f{ +) is n dimension-
al nonlinear function of the state X,; A( -) is m dimen-
sional nonlinear function; W,(k e N) is process noise
sequences, E[ W,] =0, cov[ W, W] = E[ WijT] =
Q.6,;, Q, is process noise sequences covariance ma-
trix; V,(k € N) is measurement noise sequences,
E[V,] =0,cov[V,, V] =E[V,V]] =R, R, is
process noise sequences covariance matrix.
Kalman filter assumes that the posterior density
at every time step is Gaussian and parameterized by a
mean and covariance. If the posterior probability den-
sity function p(X,_, | Z,.,_,) approximates Gaussian
and the assumptions below hold: @) W,_, and V, are
drawn from the Gaussian distributions of the known
parameters; 2 f(X,_,, W,_,) is a known nonlinear
function of X, , and W,_,; @ h(X,, V,) is a known
nonlinear function of X, and V. It can be proved that
p(X, | Z,.,) is also Gaussian distribution. Egs. (1)
and (2) can be rewritten as
X, =@, X, +W_, (3)
Z, =HX, +V, (4)
where @, . _, is the local linearization of nonlinear
function f,(+), clearly, @, ,_, is the state transition
matrix for the step from k to k +1; H, is the local lin-
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earization of nonlinear function A, (+); W,_, and V,
have zero mean and are statistically independent. The
covariances of W, | and V, are Q,_, and R,, respec-
tively. The system matrix @, ,_, and measurement
matrix H, are allowed to be time variant.

EKF is based on approximation. Egs. (1) and
(2) are a nonlinear system. Because a local lineariza-
tion of the equations may be a sufficient description of
the nonlinearity, Eqs. (1) and (2) can be linearized in
the form of Eqgs. (3) and (4).

The EKF algorithm can be described as follows:

Xk\k—l =¢k,k-1j(k-1 (5)
j’k Zj(klk-l +55(k (6)
5Xk =K,[Z, _h(Xk\k—l’k)] (7)
Kk:Pk\k—lH:[HkPklk—lHZJ'-Rk]_l (8)
:(pk,k—lPk—ld)Z.k—l +0,, (9)

P, =(I—Kka)Pk‘k71(I—Kka)T +KkRkKZ
(10)

where X . 1s updated state estimate, K, is Kalman gain
matrix that can yield an updated state estimate, and P,
is the error covariance matrix associated with the up-
dated state estimate.

Since EKF utilizes the first term in a Taylor ex-
pansion of the nonlinear function, the estimation result
is sub-optimal, not optimal. A higher order EKF that
retains further terms in the Taylor expansion can show
a better performance, but the additional complexity
has limited its widespread use.

2 Unscented Kalman Filter

UKF was first proposed by Julier and Uhl-
mann'”"*'. A central and vital operation performed in
the Kalman filter is the propagation of a Gaussian ran-
dom variable through the system dynamics. In EKF,
the state distribution is approximated by a Gaussian
random variable. It is propagated analytically through
the first-order linearization of the nonlinear system. It
can introduce large errors in the true posterior mean
and covariance of the transformed Gaussian random
variable, which may lead to sub-optimal performance
or sometimes divergence. UKF deals with this problem
by using a deterministic sampling approach. The state
distribution is again approximated by a Gaussian ran-
dom variable, but is now represented using a minimal
set of carefully chosen sample points'*'. These sample
points completely capture the true mean and covari-
ance of the Gaussian random variable. When the sam-

ple points propagate through the true nonlinear sys-
tem, the sample points can accurately capture the pos-
terior mean and covariance to the third-order Taylor
series expansion for any nonlinearity. EKF only can a-
chieve the first-order accuracy. Remarkably, the com-
putational complexity of UKF is the same lever as that
of EKF.
2.1 Unscented transformation

The kernel of UKF is unscented transformation
(UT)P'. UT is a method for calculating the statistics
of a random variable that undergoes a nonlinear trans-
formation. Consider propagating a random variable X
(n dimensional) through a nonlinear system Y =
F(X). We assume that X has the mean X and the co-
variance P, and calculate the statistics of Y. We can
form a matrix of 2n + 1 sigma vectors ( with corre-
sponding weights) according to the following equa-
tions:

X, =X (11)

X.=X+(./(n+1)P)), i=1,2,....,n (12)
X, =X-(/J(n+\M)P,), i=n+l,n+2,...,2n
(13)

where ( W ), is the i-th column of the matrix
square root, A is defined by
A=d(n+l) -n (14)
a determines the spread of the sigma points around X,
and is usually set to a small positive value, [ is a sec-
ondary scaling parameter which is usually set to 0.
Once the sigma point vector is computed, we per-
form the prediction step by propagating each column
through the nonlinear function.
Y, =F(X)) i=1,2,....2n (15)
The mean and covariance of Y are approximated
using the mean and covariance of the weighted poste-

rior sigma points.
2n
Y = ) oY, (16)
2n e B B
P, =Y (Y, -V)(Y,-1)" (17)
i=0
2n

P, =Y oi(X, -X)(Y,-Y)" (18)
i=0

where
m_ A
i = (19)
co AL (1_4p) (20)
"Th+A
m c_ 0.5

i=1,2,...2n  (21)
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w; is the first-order statistical weight, w; is the sec-
ond-order statistical weight, B is used to incorporate
the prior knowledge of the distribution of X ( for
Gaussian distributions, 8 =2 is optimal).

Note that 2n + 1 sample points need to be care-
fully chosen for unscented transformation. The method
differs substantially from general Monte-Carlo sam-
pling methods that require more sample points in an
attempt to propagate an accurate distribution of the
state'®”! . If the nonlinear system has Gaussian white
noise, the approach taken with the UT results in ap-
proximations that are accurate to the third-order. For
non-Gaussian inputs, approximations are accurate to at
least the second-order. The accuracy of the third and
higher order moments is determined by the choice of
« and B.

2.2 Unscented Kalman filter

UKF is a straightforward extension of UT to the
estimation in Eqs. (5) to (8). The UKF algorithm is
given below' ™'
(D Initialization

X, = E[X,] (22)
P() =E[(X0 _X())(Xo _X())T] (23)
Augmented state vectors
Xa:[XT X" VT] (24)
X;=E[X;] =[X; 0 0]" (25)
P, 0 0
Py=E[(X;-X))(X;-X)"1=[ 0 Q, 0
0 0 R,
(26)
) Calculating sigma points
a Aa k
Xo.k-1 =X;.1,  w :n+k (27)
szl—Xkl"‘(«/(n*’/\)PZl P W; = m +2k
i=1,2,. (28)
Xlk 1 X: 1 (’\/(n+)\)Pk 1 I,Cl) 2 +2k
i=n+1,n+2,...,2n (29)
(® Time update
X?,klk—l :f(/‘/?,kfnk_l) (30)
2n
Xy = Zw:‘nxzklk—l (31)
Py 2,)0) (Xz prer — Xpgor)
i=(
(X?,klk—l _Xklk—l)T +0, (32)
Zi,k\k—l =h(Xi,k\k—l’k_1) (33)

Zyio Zw Z, ik (34)

@ Measurement update

P Zw (Zz et = L)

i=0

(Zi,klk—l _Zklk—l)T +Rk (35)
2n
P, = Zw?(/vi,klk—l = Xuia)
i=0
(Zi,k\k—l _Zklk—l)T (36)

With the transformed function Z i1 We compute the
posterior state estimate:

X, =Xpi1 +K(Z, - Z,,_)) (37)
Finally we calculate the posterior estimate of the error

covariance:
Pk :Pﬁk—l _KkPZk—lKZ (33)
where the Kalman gain is
Kk:PiTk—l(Piz\k—l)_l (39)

No explicit calculation of Jacobians or Hessians
is necessary to implement the UKF algorithm. Further-
more, the overall numbers of computations are the
same order as that of EKF.

3 Application and Results

We consider the following equations as an illus-
trative example:

X, =0.5X, , + “L +8cos(1.2(k 1)) +W,_, (40)
=
1 X2
Z, —%+V (41)

where W, _, and V, are the zero-mean Gaussian white
noise. The covariances of W,_,and V, are Q, and R,,
respectively. O, =10 and R, = 1. The example is non-
linear both in the system equations and the measure-
ment equations. The initial state is taken to be X, =
0. 1. The constant in UT « =0. 85,8 =2. The seconda-
ry scaling parameter [/ =0. Fig. 1 shows an 80 step re-
alization of Eq. (40). Fig. 2 is the observation of the
nonlinear system.
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In order to qualitatively gauge performance and
discuss resulting issues, we consider using the tradi-
tional measure of performance: the root mean-squared
error (RMSE). The simulation results of the mean of
the RMSE over 100 independent runs are depicted in
Tab. 1.

Tab.1 Mean of RMSE and execution time over

100 independent runs

Algorithms Mean of RMSE Execution time/s
EKF 22.9205 0.0432
UKF 10.9820 0.1579

Fig. 3 shows the state estimations generated from
a single run with the different filtering methods. The
estimation of the UKF algorithm is closer to the true
state than that of EKF. The mean of the RMSE over
100 independent runs also indicates that the EKF algo-
rithm has the less accurate performance than the UKF

algorithm.
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Fig. 3 Comparison between the state estimations
of EKF and UKF

4 Conclusion

In this paper we propose the principle of EKF
and UKEF, describe the EKF and UKF state estimation
algorithms for nonlinear systems. Finally, we compare
the performance of EKF with UKF. By virtue of the
unscented transformation, UKF acts on the premise
that it is easier to approximate a Gaussian distribu-
tion, instead of linearization using Jacobian matrices as
EKF. This algorithm has two great advantages over

EKF. First, it is able to predict the state of the system
more accurately. Secondly, it is much less difficult to
implement. The benefits of the algorithm are demon-
strated in the above example. UKF is a powerful non-
linear estimation method and has been shown to be a
superior alternative to EKF in a variety of applications
including state estimation.
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