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Application of thermal parameter soft sensor in power plant
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Abstract: In order to solve the problem of the invalidation of thermal parameters and optimal running, we
present an efficient soft sensor approach based on sparse online Gaussian processes( GP), which is based on a
combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of
the data to specify the prediction of the GP model. By an appealing parameterization and projection techniques
that use the reproducing kernel Hilbert space (RKHS) norm, recursions for the effective parameters and a
sparse Gaussian approximation of the posterior process are obtained. The sparse representation of Gaussian
processes makes the GP-based soft sensor practical in a large dataset and real-time application. And the
proposed thermal parameter soft sensor is of importance for the economical running of the power plant.
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With the development of technology and the
complication of thermal processes, we need to imple-
ment real-time control or optimization for variables to
the process in order to ensure the safety and efficien-
cy. However, some important variables are difficult to
detect due to the limitation of techniques and technol-
ogy. Furthermore, we tend to meet the difficulty of
improper parameters for economical monitoring. For
the latter, we usually use the rated value to replace the
value of improper parameters, but the error is evident
in most peaking power units. Soft sensors''’ provide a
convenient solution to eliminate the above problems.

1 GP-Based Soft Sensor

The soft sensor model can be described as fol-
lows: Given the sample {x', #'}/_,, where n is the size
of training data, x' € R are inputs of the soft sensor
model, and #' € R are the corresponding desired tar-
gets, suppose that the input vector for a test case is de-
noted as x and the inputs are d-dimensional x,,..., x,
and the targets are scalar. From this training set we
want to learn a model of the dependency of the targets
on the inputs with the objective of making accurate
predictions of ¢ for previously unseen values of x.

The predictive distribution for a test case x is ob-
tained from the (7 + 1)-dimensional joint Gaussian
distribution for the outputs of the n training cases and
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the test case, by conditioning on the observed targets
in the training set. In general, the predictive distribu-

tion is Gaussian with mean and variance!** .
y(x) =k"(x)K't (1)
o3 (x) =C(x,x) —k"(x)K 'k(x) (2)

where k(x) = {C(x,x""),..., C(x,x")}", K is the
covariance matrix for the training cases K; =
C(x,x"y, t=(1",..., 1" }7, and C(x,y) is the
covariance function.

There are many choices of covariance functions
that may be reasonable. Formally, we are required to
specify functions that will generate a non-negative
definite covariance matrix for any set of points (x'",

..,x). From a modeling point of view we wish to
specify covariance so that points with nearby inputs
will give rise to similar predictions. A better covari-

ance function is recommended in Ref. [3]:
d

C(x?,x?y = voexp[ —%Zw,(xﬁi) —xE'f))z] +
=1
d
a, z X +0,8(i,)) +a, (3)
def !
where @ = {logy,, logv,, logw,, ..., logw,, loga,,
loga, } plays the role of hyperparameters, which close-
ly corresponds to hyperparameters in ANN (in fact the
weights have been integrated out exactly). We define
the hyperparameters to be the log of the variables in
Eq. (4) since these are positive scalar parameters.
Given a covariance function, the log likelihood !/
=logP(D | @) of the training data is calculated by

I= - log detk - LK 't - Mlog 21 (4)

2 2 2
Usually, we have three methods to adapt the hy-
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perparameters, such as maximum likelihood"”', gener-
alized cross-validation ( GCV)"™ and Markov chain
Monte Carlo (MCMC) "' method. The partial deriva-
tive of the log likelihood of the training data / with re-
spect to all the hyperparameters can be computed
using matrix operations, and takes time O( n’). Next,
we will set our model via iterative sparse approxima-
tion algorithm!® !
o(nd’).

2 Sparse GP-Based Soft Sensor

, whose computational time is

In the GP framework, the parameters are func-
tions and the GP priors specify a Gaussian distribution
over a function space. The posterior process is entirely
specified by all its finite dimensional marginals.
Hence, let f = {f(x,),....f(x,,) } be a set of function
values such that f, Cf, where f,, is the set of f(x,) =f;
with x; in the observed set of inputs, we compute the
distribution using the data likelihood together with the
prior p,(f) as
P(D [ H)py(h) s

Pl =ThD 1 f)),s )
where (P(D | f,) ), is the average of the likelihood
with respect to the prior GP (GP at time 0) . The pos-
terior distribution form can be used to express posteri-
or expectations as typically high dimensional inte-
grals. For prediction, one is especially interested in ex-
pectations of functions of the process in inputs, which
are not contained in the training set. At first glance,
one might assume that every prediction on a novel in-
put would require the computation of a new integral.
Even if we had good methods for approximate integra-
tion, this would make the predictions at new inputs a
rather tedious task. Luckily, the following lemma
shows that simple but important predictive quantities
like the posterior covariance of the process at arbitrary
inputs can be expressed as a combination of a finite
set of parameters which depend on the training data
only. For arbitrary likelihood we can show the follow-
ing lemma.

Lemma'®"

The result of the Bayesian update
Eq. (5) using a GP prior with mean function (f.),
and kernel K,(x,x") and data D = {(x,,y,) |n=1,2,

., N} is process with mean and kernel functions giv-

en by

n’

e pon = (fedo +ZK(x x) q(i)

Kpost(x9xT) =K()(x9xT) +z K()(x’ x[)R(lj)KO('x_/’xT)
ij=1

The parameters g(i) and R(ij) are given by

q(i) = f dfpe () a};;(D )f)
R = L[ ZELD g g
where f = {f(x ), ..., f(xy)}" and Z =

fdfpo (f)P(D | f) is a normalized constant.

The parameters g(i) and R(ij) have to be com-
puted only once during the training of the model, and
are fixed when we make predictions. The parametric
form of the posterior mean (assuming a zero mean for
the prior) resembles the representations for the predic-
tors in other kernel methods (such as SVM) that are
obtained by minimizing certain cost functions.

Making an immediate use of this representation is
usually not possible because the posterior process is in
general not Gaussian and the integrals cannot be com-
puted exactly. Hence, we need approximation to keep
the inference tractable. One popular method is to ap-
proximate the posterior by a Gaussian process''” . This
may be formulated within a variational approach,
where a certain dissimilarity measure between the true
and the approximate distribution is minimized. The
most popular choice is the Kullback-Leibler diver-
gence between distributions defined as

KL(plg) = [aopomZ e ()

where @ denotes the set of arguments of the densities.

If p denotes the approximating Gaussian distribution,
one usually tries to minimize KL (p I Ppos) » With re-
spect to p which in contrast to KL(p, ) requires
only the computation of expectation over tractable dis-
tributions.

In this paper, we use a different approach. To
speed up the learning process in order to allow for the
learning of large datasets, we aim at learning the data
by a single sequential sweep through the examples.
Let p, denote the Gaussian approximation after pro-
cessing ¢ examples, we use Bayesian rule

(yr+1 ‘.f)pA (.f)
_~wirr AR 7
Pl =Ty, A, (7

to derive the updated posterior. Since p, is no longer
Gaussian, we use a variational technique in order to
project it to the closest Gaussian process p,,,. Unlike
the usual variational method, we then minimize the di-
vergence KL(p | p). This is possible, because in our
online method the posterior (7) contains only the like-
lihood for a single example and the corresponding
non-Gaussian integral is one-dimensional, which can
be performed analytically for many relevant cases.
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3 Simulation and Result

Some parameters are required to be computed or
monitored for real-time use in thermal power systems.
However, we tend to meet problems proposed in the
beginning of this paper. Before setting the soft sensor,

Tab.1 Secondary variable

we should first choose the corresponding secondary
variables. Limited to the space, we only give some im-
portant primary variables in the power plant as exam-
ples (see Tab. 1). One can do the similar job for other
thermal parameters according to the on-spot demand.

s for primary variables concerned

Primary O, content in Feed water Flux of main Load of
. Vacuum of condenser .
variables flue gas temperature steam ball mill
Flux of main Pressure of Pressure of Temperature of
. . . Coal rate
steam main steam main steam main steam
Flux of feed Power of Temperature of Temperature of R .
. Flux of hot air
water generator main steam reheat steam
Charge Temperature of steam Inlet temperature of Pressure of Flux of recirculation
of fuel extraction from #1 heater  circulating water main steam air
Secondary Temperature of ~ Pressure of steam extraction Outlet temperature Temperature of Outlet temperature
variables exhaust fume from #1 heater of circulating water feed water of ball mill

Flux of Flux of Temperature of Differential pressure
. . . . Power of generator . .
input air main steam condensation water between inlet and outlet of ball mill
Current of . Pressure of .
Flux of main steam i Current of ball mill
fan blower governing stage

Flux of induced air

Power of generator

Vacuum

Current of induced fan

Next, we will propose a soft sensor for predicting
O, content in flue gas compared with zirconia analyzer
as an example. One can implement the others accord-
ing to Tab. 1. We obtain the samples from a peaking
power unit, which first runs steadily at 125 MW, then
drops down to 80 MW and finally runs at 80 MW
steadily.

To illustrate the performance, we begin with a
zero-mean Gaussian noise with variance 0. O1. The re-
sults for the predictive output of the soft sensor and
the actual output of the zirconia analyzer are shown in
Fig. 1. The generalization mean square error (MSE) is
. 035 51 and the basis vector set is {5.478 5, 6. 446,
.9949, 4.9176, 7.4543, 5.7995, 7.3663,
.3904, 7.7314, 7.6948, 7.7757, 7.84109,
.6299,6.1956,3.9412,6.8111, 7.548, 8.099 6,
.5714,5.8762,4.8178,3.9323,4.695,4.962 1,
.8709, 5.0725, 5.802, 7.505 3, 6.021, 7.590 2,
.7204, 7.7064, 4.9852, 5.7409, 5.9942,
.5754, 5.9507, 7.5464, 5.0034, 7.6214,
.5784,5.664 8}.

N 90 NN NN kO
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Fig.1 Results for predictive output and actual output

From the above result, we can conclude that the
proposed soft sensor is hopeful to replace the zirconia
analyzer or to be used as a backup since the zirconia
analyzer is expensive and short-life-span. And it is
easy to realize the online optimization and economical
running via the soft sensor.

4 Discussion

Recently, kernel methods( KM)!"" transcend the
border between the two most important paradigms —
GP and SVM, which is perhaps one of the major rea-
sons why branches like GP and SVM have long been
developed in isolation from each other. And GP is be-
coming popular in the community of kernel ma-

chines'?

. The main drawback of GP is heavy compu-
tational scaling, which is being alleviated by the intro-
duction of sparse approximation as shown in this pa-
per.

We discuss the thermal parameter soft sensor
based on sparse Gaussian processes, which is of im-
portance to industrial processes. And it can be imple-
mented via online computation which can be em-
ployed in thermal power systems for optimal running
and economical monitoring. Furthermore, we believe
that the proposed method opens new possibilities in
applying kernel methods to potential fields.
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