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Behavior of soil lateral deformation under embankments
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Abstract: Based on analysis of additional horizontal stress in the soil under embankment load, the behavior of
the lateral deformation of the soil along the depth is studied. The result shows that the distribution of lateral
deformation along the depth is arch-shaped, which corresponds nicely with the observed data. According to

this, a new prediction model is established to forecast the lateral deformation. The shapes of the model curve
with three parameters in the model a, b and ¢ are presented. The three parameters can easily be determined by
three measured data (s,, 0), (s,, h,) and (s,, 2h,). This model is applied to study two cases. The
comparisons illustrate that the displacement predicted by the model corresponds nicely with the measured

data.
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In the highway construction on soft ground, the
stability and settlement of the subsoil should be con-
sidered; the latter is more complicated. The lateral de-
formation of soft soil always exists under embankment
load, which not only affects the vertical settlement, but
also affects the behavior of adjacent structures'' ™.
Larger lateral deformation even influences the stability
of the ground. The lateral deformation can be consid-
ered a good indicator of the stability of embankment
foundations, and many scholars'*~® have researched
this aspect. Based on the characteristics of lateral de-
formation along the depth, a new prediction model is
established to forecast the lateral deformation. The
model is applied to two cases and the model can pre-
dict the lateral deformation subject to embankment
load reliably.

1 Characteristics of Additional Horizontal
Stress in Soil under Embankments

The additional stress, which is the main cause of the
deformation in the soil under embankment load (see Fig.

1), can be solved by the following equations'” .
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where the above parameters are shown in Fig. 1.
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Fig.1 Sketch of uniform embankment load

For the typical embankment load, as indicated in
Fig.2, the point m(0, z) where the additional hori-
zontal stress produced by the shadow part load, can be
obtained by Eq. (1). For symmetry, the additional
horizontal stress produced by the other part load can
be obtained through the point m'(2b, z) by the shad-
ow part load. Then the additional horizontal stress at
the point m can be obtained by
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Fig.2 Sketch of embankment load in highway
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Thus the additional horizontal stress along the depth at
the toe under embankment load can be expressed by
Eq. (4).

Eq. (4) is too complicated. It can be intuitively
shown in Fig. 3, as & =5 m (& is the embankment
height),a=7.5m, b=22.5 m, p =100 kPa. And the
curve is arch-shaped. ¢ = o/E (elastical module),
when the value of E remains constant along the
depth, the distribution of lateral deformation is the
same as the additional horizontal stress. For the homo-
geneous subsoil, the distribution of lateral deformation
is also arch-shaped.
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Fig.3 Distribution with the depth of the additional
horizontal stress under embankments

2 Behavior and Prediction of Soil Lateral
Deformation under Embankments

2.1 Analysis on the observed data

Tavenas, et al. ™™ has summarized the lateral de-
formation developing in clay foundations under 21 dif-
ferent embankments, and the relationship between the
lateral deformation and vertical settlement is ana-
lyzed. The typical curve of the lateral deformation
with the depth is shown in Fig. 4. It is clear that the
maximum lateral deformation occurs not on the sur-

face but in a place below the surface.
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Fig.4 Typical deformation pattern in embankment foundation

After long-term observations, Tavenas, et al. 9]
presented the ratio y/y, with the depth, see Fig. 5.
Plenty of measured data show that the distribution of
lateral deformation with the depth is arch-shaped and
the maximum deformation exists at some distance un-
der the ground.
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Fig.5 Lateral deformation distribution with the depth un-
der embankments. (a) Saint-Alban-B; (b) Cubzac-Ponts-B; ( c)
Ska-Edeby

2.2 Establishment of the prediction model

Based on the additional horizontal stress distribu-
tion with the depth in the soil under the embankment
load and the measured data, it can be obviously con-
cluded that the curve of lateral deformation with the
depth is arch-shaped. The following function is pres-
ented to predict the lateral deformation.

s=(a+bz)e ™ (5)
where a, b and c¢ are the parameters in the model, and
7 is the depth.

This function matches the characteristic of the
shape of the lateral deformation, and owes good adapt-
ability. Figs. 6(a), (b) and (c) show the curves of the
model varying with the three parameters, respectively.

1) When z=0, s = a0, that is the value of the
lateral deformation at the ground surface, which is ac-
corded to the above analysis.

2) The differentiation of the model equation s
with respect to the depth z is shown by Eq. (6). When
z<(b —ac)/bc, s'=0 demonstrating that the lateral
deformation increases with the depth. When z > (b -
ac)/be, s' <0 representing that the lateral deforma-
tion decreases with the increase of the depth.

95 —(b-ac-bez)ye (6)
02

3) The second derivative s to z is expressed by
Eq. (7). When z<(2b - ac)/bc, s" <0, and when
z>(2b —ac)/be, s" >0. The second derivative chan-
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ges from a negative quantity to a positive quantity, so
the curve has an inflexion. It is arch-shaped.
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Fig.6 Behavior of the curves. (a) Shape with parameter a;
(b) Shape with parameter b; (c¢) Shape with parameter c; (d) The
first and the second derivative

Fig. 6(d) gives the curves of the first derivative
and the second derivative. The first derivative changes
from a positive quantity to a negative quantity, so the
deformation increases at first then decreases with
depth. The second derivative changes from a negative
quantity to a positive quantity, so the curve has an in-
flexion.

2.3 Determination of the parameters in the pre-
diction model

From the above analysis, it can be seen that the
characteristics of the model corresponds nicely with
those of the measured lateral deformation along the
depth. The proper determination of the three parame-
ters is the key to the accuracy of the model.

In Eq. (5), when z =0, a =s,_, is the lateral de-
formation at the surface. The parameter a can easily
be determined by the lateral deformation on the sur-

face.
Eq. (5) can be expressed as
se“ =a+bz (8)
Take (s,, h,) and (s,,2h,) into Eq. (8), then
s,e™ =a + bh, (9)

5,6 =q +2bh, (10)

Combining Eq. (9) and Eq. (10), the following equa-
tion is obtained.
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X = slizs;z—élsza for x=e
sox >1, ¢ =Inx/h,, then taking a and c into Eq.
(8), b can be solved.

From the three measured data (s,, 0), (s,, A,)

chy

and (s,, 2h,), the three parameters in the model can
be determined, then the prediction curve of the lateral
deformation with the depth is obtained.

3 Case Analysis

3.1 Prediction of the lateral deformation of Han-
gyong highway'""’

Hangyong highway is a 145 km long major arte-
rial road connecting Hangzhou with Ningbo, where
soft clay exists along the highway. The curve of the
lateral deformation with the depth of one section is
shown in Fig. 7(a), which is obviously arch-shaped.
The location of the maximum lateral deformation oc-
curs at a depth of about 7 m. The predicted lateral de-
formation beneath the toe of the embankment is
shown in Fig. 7(a). The prediction model presented in
this paper well reflects the behavior of the lateral de-
formation along the depth.
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Fig.7 Prediction of the lateral deformation of highway.
(a) Hangyong highway; (b) Nagareyama and Toichi highway

3.2 Prediction of the lateral deformation of Na-

gareyama and Toichi highway

Suzuki''"' has fully depicted the lateral deforma-
tion in Nagareyama and Toichi highway. Fig. 7(b) is
one typical normalization curve of the lateral deforma-
tion with the depth. It is clear that the curve of the lat-
eral deformation along the depth is arch-shaped. And
the predicted model corresponds nicely with the ob-
served lateral deformation along the depth.
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4 Conclusion

The prediction of lateral deformation under the
toe of an embankment during construction is possible
with the model presented in this paper. On the basis of
the additional horizontal stress in the soil under em-
bankment load and plenty of measured data, a new
prediction model is established. The three parameters
in the model, a, b and c, can easily be determined. The
model is applied to study two cases. The comparisons
illustrate that the lateral deformation predicted by the
model corresponds nicely with the measured data. In
general, the prediction of lateral deformation by the
model is reliable in comparison with the observed
data.
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