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Edge span of L(d,1)-labeling on some graphs
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Abstract: Given a graph G and a positive integer d, an L(d, 1)-labeling of G is a function f that assigns to

each vertex of G a non-negative integer such that

flw)y =fv) | =d if dg(u, v) =1;

flwy —fv) | =1 if

d;(u,v) =2. The L(d, 1)-labeling number of G, A,(G) is the minimum range span of labels over all such

labelings, which is motivated by the channel assignment problem. We consider the question of finding the

minimum edge span 8,(G) of this labeling. Several classes of graphs such as cycles, trees, complete k-partite

graphs, chordal graphs including triangular lattice and square lattice which are important to a

telecommunication problem are studied, and exact values are given.
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1 Background

The L(2, 1) -labeling is introduced by Griggs and
Yeh'", as a variation of the channel assignment prob-
lem in radio system which was first formulated as a
graph coloring problem by Hale'”'. Suppose that a
number of transmitters or stations are given. We ought
to assign a channel to each of the given transmitters or
stations in order to avoid interference. To reduce inter-
ference, any two “close” transmitters must receive dif-
ferent channels, and any two “very close” transmitters
must receive channels that are at least two apart. We
can construct an interference graph for this problem so
that each transmitter or station is represented by a ver-
tex on R’. There is an edge between two “very close”
transmitters or stations, and we define “close” if the
corresponding vertices are of distance two.

Given a graph G =(V, E), an L(2, 1) -labeling of
G is a non-negative integral function such that
[f(x) =f(y) |22, if {x,y} e E and [f(x) -f(y) | =
1,if d(x, y) =2. There are many papers concerning
the L(2, 1)-labeling number"” """, Griggs and Yeh'"
proved that A (G) <A + 2A and conjectured that
A(G) <A*; Chang and Kuo"' improved the bound to
A(G) <A” +A. In this paper, we consider a more gen-
eral problem L(d, 1)-labeling. The L(d, 1)-labeling
also has been extensively studied in many papers. The
L(d, 1)-labeling for chordal graphs was investigated
in Ref. [4]. It proved that A,(G) <(A +2d - 1)°/4
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for any chordal graphs with the maximum degree A.
At the same time, it also has proved that A,( G) <A’
+(d-1)A, where A is the maximum degree of the
graph. But in this paper we consider another parameter
of the L(d, 1)-labeling. Given an L(d, 1)-labeling f
on G, we define the edge span of f, denoted by B,( G,
A =max{ |f(x) —=f(» |: {x, y} € E(G)}. The edge
span of L(d, 1)-labeling on G, denoted by B,(G), is
min 3,(G, f), where the minimum runs over all L(d,
1) -labelings f on G. For this parameter, Yeh"' studied
B,(G) for some graphs. In section 2, we give some
more general results 8,( G) on cycle, tree, complete
multipartite graph, r-path as well as the triangular lat-
tice and the square lattice. The latter two graphs are
motivated by the design of planar regions for cellular
phone networks.

2 Main Results

It is clear that B8,(G) <A ,(G) for any graph G.
If G is a complete graph, then 8,(G) =1 ,(G).If G is
a path P, where n=2, then 8,(G) =d. If H is a sub-
graph of G, then B,(H) <B,(G). In fact, 8,( G) might
be far less than A,( G), we can find it from the fol-
lowing results.

Theorem 1 Let C, be a cycle of order n=3, d
eN, then B,(C;) =2d,8,(C,) =2,8,(C,) =3,
B.,(C,) =d+1,where n=4,d=3 and n#5,7,...,2d
-1.

Proof We can easily see that 8,( C;) =2d, then
we assume n=4. Let V(C,) = {vy, V{5 .0, v,_1 },
where v, is adjacent to v,,,, and v,_, is adjacent to v,
where i =0,1,...,n-1.

Case 1 When n =2k, k=2.

First because all the labels are non-negative, there
must be a vertex labeled 0, without loss of generality,

i+l
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say, v,. By the definition of the L(d, 1)-labeling, ei-
ther the label of v, or the label of v,_, is at least d +
1. Then B,(C,) =d +1 with n=4. Secondly, label v,,
Viseeoy Vi With 0, d, 24, ..., (k — 1) d respectively and
label v, ,,v, 5,...,v, withd+1,2d +1,..., kd +1 re-
spectively. Clearly, this labeling is an L(d, 1)-labe-
ling, and 8,(C,) <d +1. Then B8,(G) =d +1 for n =
2k, k=2.

Case 2 When n=2k+1,k=2.

From above, clearly 8,(C,) =d +1.

When d =1, we can label v,, v,,..., v,,, with 0,
1,3,5,..., 2k — 1, respectively. Label v, ,, v, ,,...,
Vs With 2k, 2(k - 1),..., 4, 2, respectively. Clearly
this labeling is an L(1, 1) -labeling with edge span d +
1 =2. Therefore B,(G) =d +1 =2.

When d =2, we can label v, v,,..., v,,, with O,
2,4,...,2k,2(k +1) respectively. Label v, ,,v,_,,...,
V.., With 3,5,..., 2k — 3, 2k — 1 respectively. Clearly
this labeling is an L(2, 1) -labeling with edge span d +
1 =3. Therefore B,(G) =d +1 =3.

When d=3,let t =(n - (2d +1))/2 where n=
2d +1. We can label vy, v,, v,,..., v,,,,, with 0, d,
2d,3d,...,td, (t+1)d, (t+2)d,..., (d+t+1)d re-
spectively. Label v,, .2, Viii3s -5 Vagars Vagsrs1 With
(d-1)(d+1) +td, (d-2)(d+1) +1, ...,
2(d+1) +td, (d + 1) + td, respectively. Label
Vadirs2s Vadsrsas -+ Vaawaiots Vaarar Vaasaenr With (d +
1) +(t-1)d,(d+1) +(t-2)d,...,(d+1) +2d, (d
+1) +d, d +1 respectively. Clearly this labeling is an
L(d, 1) -labeling with edge span d + 1. Therefore when
n#5,7,...,2d -1,B8,(G) =d +1.

From the above, we have not given any results
about C, where n =5,7,...,2d -1 and d=3. The fol-
lowing theorem gives their upper and lower bounda-
ries.

Theorem 2 Let C,,,, be a cycle of order 2k +
I,where 2<k<d-1,then d +1<B,(Cy,,) <

min{(%ﬂ,mzﬂ%ﬂ.

Proof First we can label v, v,,..., v, v,,, With
0,d, 2d,..., kd, (k + 1) d, respectively. Label v,_,,

. 3 5 1
V. yrees Vy, With (jdl (711..., [(k —?)dl re-
spectively. Clearly, this labeling is an L(d, 1)-labeling
with edge span (%d W Secondly we can label v, v,,

Vs Vaseues Vor a5 Vap_1» Vor With
d,0,d+ Ldz‘kj +1, Ldz‘kj +1,...,2d -
(SE -2 a-[ 955 -2,2a (1)

or

d

—k
5 J+2,...,2d-

(k) 20255 22,04 (2)
2 2

When (d - k) =0(mod 2), we label C,,,, with
(1). When (d - k) =1(mod 2), we label C,,,, with
(2). Clearly this labeling is an L(d, 1) -labeling with

d,0,d+L%J+2,L

edge span d + L%J + 2. Therefore d + 1 <

. 3 d-k
Bd( C2k+1) smln{ (?—‘d) d +2 + LTJ }
Theorem 3 Let T be a tree with the maximum
degree A, then 8,(T) = (A/2—| +d-1.

Proof Let m = fA/2W +d - 1. Since A is the
maximum degree of T, K, , is a subtree of T. Let
V(K, ) ={ve, V5..., v, } Where v;,i=1,2,..., A are

leaves of K, ,. We label v, with (A/ZW +d -1 and

other vertices labeled with 0, 1,..., [ A2 ] -1,[A/2]
+2d -1,...,A +2d - 2. We can easily see that the
L(d, 1) edge span of K, , is equal to m. So B,(T) =
B4(K, ,) = m. On the other hand, we can give it the
labeling as follows.

For any vertex of T, we can visit it from root v,
labeled x by a breadth-first search. For a visited vertex
v, if v is labeled by y but its children are unlabeled.
Since v has at most A — 1 children which are unla-
beled, we can label them with {y-d,y+d,y-d -1,
y+d+1,...,y—-m,y+m}.

We can continue as above till all interval vertices
are visited. Every labeling adds the same large positive
integer n such that every labeling is positive. Clearly,
this is an L(d, 1)-labeling with edge span m, i. e.
B,(T) <m. Therefore, B,(T) = m.

Theorem 4 Let K=K, ,
partite graph , where n, =n,=n; = ..
n,=d —-1.Then B,(K) = (nl/ﬂ +n, +ny + ... +0, +
(k=-1)(d-1) -1.

Proof Let?= (nl/ﬂ +n, +n; +...+n, + (k-
1)(d-1) —=1. Suppose V(K) =V, UV,U...UV, U
Visr, Wwhere ViUV, ., V,,..., V, are partite sets of K,
where |V, | = (n]/Z—‘, Vel = Ln]/ZJ and |V,| =
n,i=2,3,..., k. Then we can label the vertices in
each V; with consecutive integers such that the mini-
mum label in V, is 0, and the minimum label of V; is

», be a complete k-

.=n;,and n, -

the maximum label of V,_, plus d. Clearly, this is an
L(d, 1)-labeling with edge span ¢, thus B,(K) <t.

On the other hand, let f be an L(d, 1)-labeling,
we shall prove that 8,(K,f) =t.Let ve V,and ue V,
be such that f(v) =0 and p =f(u) = Iapea\;;f( w) where i
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=1,2,....,k+1. Then

p=A(K) = En +(k-1)(d-1) -1 =

t+L%]J>t

If r#s, then B,(K, f) =p=t. So we assume that r =s.
Let z and y be the maximum and the minimum value
of f on all vertices but not in V,.
k
z-y= Yn —n +(k-2)(d-1) -1 =
i=1
4 S =n - -1
and
n
(z-0) +(p-y) ;2;+2L?J —n, - (d-1)=21 -1

Therefore, either z -0 =t or p — y=t, which im-
plies that 8,(K, f) =t.

The vectors ¢, = {1,0} and &, = {1/2,/3/2} in
the Euclidean plane. Then the triangular lattice A is
defined by A, s. t. V(A) = A, ={ig, +je&,:i,je L},
E(A) ={uv:u,veA,,d;(u,v) =1}. The triangular
lattice is important to the radio engineer, since, if the
area of coverage of each transmitter is a disk of fixed
radius r centered on the transmitter site, then placing
those sites at the vertices of a regular triangular lattice

(with adjacent sites a distance /3 apart ) covers the
whole plane with the smallest possible transmitter den-
sity. There is a subgraph of A, denote A,, which is the
subgraph induced by {(i,j): - m<i<0,0<j<m and
O0<i+j<mfor m=2} in A.

Theorem 5 B,(A) =2d +1.

Proof V(A) ={ig, +jg,:1i,jeZ}, then for con-
venience we can use (i, j) to represent a vertex v =ig,
+j&, in A. Let f: V(A)—Z where f(i,j) = —(d+1)i
+dj, then this is an L(d, 1) -labeling of A: for any two
vertices (i,j,), (i,,j,) € V(A).

1) Ifd((i,,j,),(i,,7,)) =1in A, then i, =i, and
‘jl —J> ‘ =1, o0rj, =j, and ‘il -1 ‘ =1, 0r (i, —i,) (J,
—Jj,) = —1.For each case, | f(i,,j,) —fir.}j,) | =d.

2) If d((iy,j,)s (irsjo)) =2, then [i, —i, | =2
and ji =j,, |j, =jp| =2 and i, =i, or [i, =i, | =2,
\j, =j, | =2 and (i, —i,) (j, —j,) = —4. We can also
find that in each case \f(il,jl) -1y, J,) | =1. There-
fore, f is an L(d, 1) -labeling with edge span 2d + 1.

On the other hand, let W be the subgraph of A,
(see Fig. 1). It is easy to see that 8,(W) =2d + 1,
then B8,=B,(W) =2d + 1. Then 8,(A) =2d +1.

The square lattice [ is defined by V =A(D) =

Z’ where Z is the set of integers, E () = {uv:
d(u,v) =1} where d(u, v) is the Euclidean dis-
tance between u and v. In fact, the square lattice is the

product of two paths. Given n, m, [J, ,, is the subgraph
of O and is induced by {(i,)):0<i<n,0<j<m}.
When n =m =4, we can see Fig. 2.

0 d+1

d 2d+1
Fig.1 Subgraph of A

m

Fig.2 Subgraph of [

Theorem 6 B,(0) =B,(0,,,) =d+1,n=m=1.

Since [, , is isomorphic to C,, by theorem 1,
B.(0O,,) =B,(C,) =d+1. Since [, , is a subgraph
of O, hence B,(0) =B,(0,.,) =B.(0,.,) =d +1.
On the other hand, let f: V() —Z with f(i,j) =di +
(d+1)j, where f(i,j) stands for f((i,j)). For any
two vertices (i,,j,), (1,,],) € V(O):

D) If d( (i jy)s (iys o)) =1, then [i, i, | =1
and j, =j,, or i, =i, and |j, —j, | = 1. In each case,
| f(i,,j,) =f(iy,j,) | is either d or d +1.

2) 1 d((iy, ji), (ins jo)) =2, then |i, —iy| =1 =
\j, =j»|,or |i,—i,| =2 and j, =j,, or i, =i, and
\jl - | =2.In each case, ST —flssg,) | is never 0.

We can find that fis an L(d, 1) -labeling with the
edge span d +1,then d +1<B,(0,,) <B,(0) <d +
1. Then we have B,(0O, ,,) =B,(0) = d+1.

An r-path is a graph with vertices v, v,,..., v,

n
where n > r, such that v, v v;,, induce a clique

ivloeces Vigr
fori=1,2,...,n —r, denoted by P;. By the definition,
we can easily find that the chromatic number and the
order of the maximum clique of P, are both equal to r
+ 1. For choral graphs, i. e. graphs do not contain in-
duced circuits with more than three vertices. Clearly
P’ is a special choral graph.

Theorem 7 Let G be an r-path with n vertices
and d a positive integer with d#1, where n=r +2.

Then A, (G) <rd +t where t=fn/(r+1)1—1.

Proof Letm=(r+1) (n/(r +1) —‘ clearly m=
n, then A (P,) =A,(P,).Now we can label the verti-
ces of P, with the sequence: t,d +t,...,rd +t,t —1,d
+t-1,...,rd+t-1,...,0,d,..., rd.

Clearly this labeling is an L(d, 1)-labeling with
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the edge span rd +¢, then A,(P)) <rd +1.

Remark When r+2<n<2r+2,A,(P)) =rd
+1;when n<r+1, A,(P)) =(n —1)d. This result
can be found in Ref. [4].

Corollary Let G be an r-path with n vertices
and d a positive integer with d#1. When n<r + 1,
B,(G) =(n-1)d;when n=r+2,8,(P,) =rd +1.

Proof Since n<r +1, P, is a complete graph
with order n, then 8,(P,) =(n —1)d. By theorem 6,
we can easily find 8,(P,) <rd + 1. On the other
hand, since A,(P.,,) =rd + 1, there must be two ver-
tices v, and v; labeled with O, rd + 1, respectively and
vy, e E(P,,,). Then B,({P,}) =B,(P,,,) =rd +1.

r+2
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