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Abstract: Finding the nearest volume-preserving matrix for a given matrix is studied. A matrix equation is first

obtained, which is a necessary condition for the solution to the problem. Then the equation is solved by the

singular value decomposition method. Some additional results are also provided to further characterize the

solution. Using these results, a numerical algorithm is introduced and a numerical test is given to illustrate the

effectiveness of the algorithm.
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We consider the following nearest volume-preser-
ving matrix problem: For any given matrix A € R"*",
find a matrix X e S(n) such that

)A(:arg min HA—X”;} (1)
XeS(n)
where S(n) denotes the set of all real volume-preser-
ving matrices of order n,
S(n)={A eR"*":det(A) =1}
which is a Lie group with the Lie algebra'':
s(n)={AeR""":tr(A) =0}

Such kinds of problems have wide applications in
signal processing and computer vision ( see Refs. [2 -
7]) . The problem considered here can be viewed as a
“dual” problem of the one considered in Ref. [7], in
the sense that the constraint sets of the two problems
are S(n) and s(n) respectively, and the latter one is
just the Lie algebra of the former one. On the other
hand, observing that S(n) consists of all volume-pre-
serving affine transformations which have practical ap-
plications'®’, when we obtain an approximate transfor-
mation by measurements, we have to solve problem
(1) to get the modified one with a physical sense. We
refer to Refs. [3, 6, 9] for more details along this
line.

In this paper, we first derive a matrix equation
which should be satisfied by the solution to problem
(1). We then solve the equation by the singular value
decomposition method. We have also obtained a result
characterizing the solution of (1) in detail. Finally, a
numerical algorithm is provided by means of the pre-
vious results and a numerical test is given to illustrate
the effectiveness of the algorithm.

1 Necessary Conditions for Solutions of (1)

In this section, we first give a necessary condition
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for the solution of (1).

Lemma 1 Let X e S(n) solve the least square
problem (1). Then it must satisfy the following matrix
equation:

X' (X-A) =), XeS(n) (2)
where A € R is some real constant and I, denotes the n
x n identity matrix.

Proof 1t is evident for any matrix W e s(n) and
any ¢ e R that det( etW) =1., Hence, the smooth curve
{IA(e’W},ER is on the Lie group S(n). Noting that X is
the solution of (1), we find

Sla-xelz | <o
which together with some simple computation implies
(A-X,XW) =0

(X"(A-X),W) =0 (3)

Moreover, since Z — %tr(Z) I, es(n) for any Z e
R"*", it follows from (3) that
(X"(A-X),Z —%tr(l)l,) =0
i.e.,
(X"(A-X) —%tr(f(T(A -X)1,.2) =0

which yields asserted result due to the arbitrariness of
Z.

We next consider the solution to the matrix equa-
tion (2). To avoid unnecessary complexity, we as-
sume in what follows that A is nonsingular, and so ad-
mits the singular value decomposition''”:

A=P AP, (4)
where P\, P, e O(n); A =diag(u,, tos--» hy)> by =
Mo =...=w, >0; O(n) denotes the set of all n xn or-
thogonal matrices, and diag(7,, 7,,..., 7,) is a diago-
nal matrix with the i-th diagonal entry 7,.

Lemma 2 Let the n X n matrix A be nonsingu-
lar with the singular value decomposition (4). Then
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there exist some constants 7,, 75,..., 7, such that
X =P diag(7, 7p,...,7,) P, (5)
solves the matrix equation (2). Moreover, each solu-
tion of Eq. (2) must be described in this form by
means of a proper singular value decomposition of A.
Proof Let X be a solution of Eq. (2). It follows
from Eq. (2) that X"A is symmetric,
X'A=A"X (6)
Since the singular values w,, u,,..., u, of A may
be equal, we rewrite the singular value decomposition
(4) in block form for later use.
A =P AP, (7)
where P, P, € O(n), A = diag(o,1,, 0,1
lL).0,>0,>...>0,>0.
Let X, =P,"XP.. Then Eq. (6) can be recast as
(AX)" =AX,
which indicates AX, =V is symmetric, hence Eq. (2)
becomes

cees O

ny?

VA’V -V=)I,
or equivalently,
ATV=I + V!
So we know A ~*V is symmetric, which gives
AV=VA~? (8)
Now let us partition the matrix V in the following
block form compatible with the block structure of A:

Vi o Vi
V=l : V, e R

Va . Vi
Then Eq. (8) is equivalent to

—2 -2 ..
(o, -0 )Vij:O Lj=1,2,...,k
which leads to
V=0 i#]
V,=V.eR"" I<isk

On the other hand, since V; is symmetric, we have the
spectral decomposition:

Vi= QiiAiiQiiT 0,€0(n)
where A, is diagonal. We define
0,
0, =P, |: .. }
Ou
0, !
0, E[ - ] P,
Oy
and
0'1_1A11
A=
O-kilAkk

Then, it is clear that Q,, Q, € O(n),
A =P AP, =0,A0,
and

X=PXP,=P,A'VP, =

Ql 1 All Q—lrl
PIA_] P, =0,A0,
QkkAkaZk
Now, if A and X are written in the above forms, we
can easily see that Eq. (2) is equivalent to A* - AA =
Al,. Hence, X =P A P, also solves Eq. (2) if A meets
the previous equation. Note also that A = Q, AQ, is a
singular value decomposition of A. Therefore, each so-
lution of Eq. (2) can be described in the form Eq. (5)
by means of a proper singular value decomposition of
A.

2 Further Discussions

It follows from lemma 1 and lemma 2 that each
solution X of the constrained optimization problem
(1) can always be expressed in the form (5). There-
fore, in order to solve problem (1), it suffices to eval-
uate all the values of [|A - X[} with X given by Eq.
(5). In this case, we have by the basic property of
Frobenius norm that

g(n) =lA-X[5 = A -diag(r,, 75y 7) [ =

Z (,LL,— _Ti)2 (9)

7

where, as shown in lemma 2, {u,}_, are the singular

i

values of A enumerated in descending order. Moreo-
ver, the constraint condition det(X) =1 amounts to

[I7 =det(Q,0,) =sgn(det(A)) (10)
i=1

where sgn( +) is a sign function defined by

[l x=0
o0 ={_
Thus problem (1) can be reformulated as
min g (7)

(11)
subject to [ 7, = sgn(det(A))
i=1

A

Lemma3 Let7={%,7,,...,7,} solve the con-
strained optimization problem (11). Then there exists
some real constant A such that

L+ 2 +A
g IV T2 V;‘ i=1,2,..,n (12

Proof By the method of Lagrange multipliers,

there exists some real constant M/\ such

that 7 satisfies

c 2 (det(A))
o[ 3, -y - AN

n

(HTf —sgn(det(A)) ) ] =0

i=1

or equivalently,
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4
which yields the desired expression (12) immediate-
ly.

Lemma 3 provides an important property charac-
terizing the solution of problem (11), but there are
still 2n possible combinations, each of which may re-
sult in the desired solution. The next result is given to
simplify this difficulty.

Lemma4 Let7={7,7,,...,7,} solve the con-
strained optimization problem (11). Then the follow-
ing statements hold:

D7 =f=...=7;

@ If there exists some #, such that 7, =

Mf‘«/#?+/\

2

Ti(Mi _Ti) == Sgn(djt(A))/\HTi == A
i=1

, then for every j=1i, ,uj2 +A >0, we

have

LA A

T. =

J 2
(3 There do not exist two different singular val-

ues u,; >u; (i <j) such that
LM A

o KT WBEA L
! 2 oY 2

Proof

1) If statement (1) is not true, then there exist at
least two components 7,, 7;(i <j) of 7, such that 7, <
7;. We then exchange the values of these two compo-
nents to obtain a new admissible choice 7. It is easy to
see that g(7) < g(7) , which leads to a contradiction.
The desired result then follows.

2) If statement (2) is not true, then there exists

some j, > i such that ,u,jz.0 +A >0 and
2
_Iu“/'o + v i +A
Tjo = 2
Thus the above statement gives

T =T,

B =1y = A g+
or equivalently,

— (X i) = Jpi + A, + A
That means A +puu; <O, which together with u;, <pu,
yields
A +,LL;U <A +uuy, <O

We then obtain a contradiction. This completes the
proof of statement 2) of lemma 4.

3) If statement (3) is not true, then there exist two
different singular values w; >pu; (i, <j,) such that

2 2
_/“Lf() /M +A _Iu’jo ~ A Hi +A

i 2 > Ty = 2

7’:

Thus it follows from statement (1) just proved that Ti
=7, , which results in A =0 by some simple calcula-
tion. When A =0, 7‘,.0 =0 which contradicts the admis-
sible condition (10). When A >0, it is clear that 7; <
0, 7;, <0. We then change the components of 7 at the

A

positions i, and j, into -7, , -7, respectively, and

i’
that gives us a new admissible choice 7. It is evident
that g(7) <g(#) . This is a contradiction. The desired
result is therefore verified.

By virtue of lemmas 1 to 4, we can obtain the
following result directly.

Theorem 1 Let the nonsingular matrix A admit
the singular value decomposition (4) and assume that
its smallest singular value has multiplicity n,, i. e.,
My -nys1 = --- =M, Then there exists some nonnegative
integer k ( 0<k<n,) and some real constant A satis-
fying the equation

=1 2

) = sgn(det(A))

2
(13)
such that the following matrix solves problem (1):
X=P,DP,
with
T /-L1+«//-L?+/\ Mn—k+VMi—k+A
D =diag ( > yeues > )

B = Ha A = s + A )
> yeens >
Proof According to lemma 1 and lemma 2,
problem (1) can be converted into problem (11), the
solution of which should take the form (12) by lem-
ma 3. Furthermore, by lemma 4 only the following
combinations may solve problem (11):

=I“Ll+ VILL?J’-/\' _/“l‘nfl+ \//"(‘ifl-"-A

T ) seees T = ) 5
., = A A P = A Mo + A
n-l+1 = e

2 2

where 0 </<n,. We then obtain the result of theorem
1 easily.

s Ty =

3 Numerical Results
We first transfer Eq. (13) into

) = l—fu + «/2113 +A («/p«i +2/\ —m)k _
i=1
(-1)"sgn(det(A)) =0 (14)

It is clear that f(A) is strictly increasing as A e (0,
+ ). Hence, only if f(0) <0, Eq. (14) has one (on-
ly one) solution in (0, + ).

According to theorem 1, we then have the fol-
lowing algorithm for solving problem (1):
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(D Compute the singular value decomposition of
A to obtain P,, P, and A used in Eq. (4).

@) Let n, be the multiplicity of the smallest sin-
gular value of A. For k =0, 1, ..., n,, compute the
whole set of solutions of Eq. (14) in the interval
[ - ,u,i,()] ;if f{0) <0, then also compute the unique
solution of Eq. (14) in (0, + ).

(3 For each A obtained above, compute the relat-
ed 7 by the formula given in theorem 1, and then
compute g(7) by Eq. (9). Determine those A which
correspond to the minimal value of g(7) just ob-
tained.

@ For each of these 7, compute X = P,DP,,
where D is a diagonal matrix with the i-th entry taking
the value 7,, the i-th component of 7. Then X solves
problem (1).

We next use the algorithm to solve a concrete
problem. We randomly generate a matrix as follows:

0.8462 0.6721 0.6813

A=]0.5252 0.8381 0.3795

0.2026 0.0196 0.8318

The related singular value decomposition is

[0.7336 -0.0557 -0.67737
P, =|0.5790 -0.4706 0.665 8
L0.3558 0.8806 0.31304
[ 0.5760 0.5693 0.586 77
P,=| -0.1724 -0.6170 0.7679
L -0.799 1 0.5434 0.25724

A =diag(1.7309,0.6719,0.200 4)

In this case, n, = 1. By computation we also find
that only as k =0 Eq. (14) is solvable and A =0.908 2,
7={1.8534,0.9190,0.587 1}, g(7) =0.225 6. Thus

1.1097  0.5804 0.656 1
X=PDP,=|0.3803 1.0902 0.3984
0.0935 -0.0240 1.0556

solves problem (1) with the above matrix A.
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