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Abstract: A parameter estimation algorithm of the continuous hidden Markov model is introduced and the

rigorous proof of its convergence is also included. The algorithm uses the Viterbi algorithm instead of K-means

clustering used in the segmental K-means algorithm to determine optimal state and branch sequences. Based on

the optimal sequence, parameters are estimated with maximum-likelihood as objective functions. Comparisons

with the traditional Baum-Welch and segmental K-means algorithms on various aspects, such as optimal

objectives and fundamentals, are made. All three algorithms are applied to face recognition. Results indicate that

the proposed algorithm can reduce training time with comparable recognition rate and it is least sensitive to the

training set. So its average performance exceeds the other two.
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The hidden Markov model (HMM) is a statistical
model to depict nonstationary stochastic processes. It
has widespread applications in all areas of pattern rec-
ognition. Parameter estimation has been an active and
significant field in the study of the HMM all along.
The traditional Baum-Welch (denoted by BW hence-
forth) algorithm'" and the segmental K-means (deno-
ted by KV) algorithm'” use maximum-likelihood
(ML) as optimization criterion. Although some other
optimal objectives'™*" were introduced later, the train-
ing algorithms based on ML are still the most popular.

What we discuss in the paper are training algo-
rithms based on ML. The BW algorithm adds the prob-
abilities over all possible state transition paths during
estimation; the KV algorithm (also named as the train-
ing algorithm grounded on optimal state path) finds the
optimal state sequence by the Viterbi algorithm and de-
termines the branch sequence using K-means cluste-
ring, while our algorithm determines optimal (in ML
sense) state and branch sequences via the Viterbi algo-
rithm directly.

1 Fundamentals of the HMM

The parameter set to characterize a continuous
HMM includes initial distribution 77 = [ 77;], transition
matrix A = [a;] and emit probability density function
(PDF) b,(0,), 0, is the observation vector at time 7.
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where N is the number of states of the model, ¢, de-
notes the state at time 7. Usually the emit PDF is ap-
proximated by a weighted sum of M Gaussian density
functions G.
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where M is the number of mixture components which
are called “branches” in this paper, u; is the mean
vector and ¥, is the covariance matrix of the k-th
branch in state j. Let C =[cy ], pm =[p;], 2 =[],
then a continuous HMM can be characterized by A =
{m A, C9M72}'

For the mixture model formulated by Eq. (2),
Ref. [ 5] made the following illustration which is
shown in Fig. 1. A state j with M branches is equiva-
lent to M +2 states j, jo, j,» jps ---5 Jy» €ach with a sin-
gle branch. The transitions departing from state j have
probabilities equal to the corresponding weights ¢,
1 <k<M, and each state j,, | <k<<M generates obser-
vation O according to the probability distribution
G(O,py,2,), 1 <ksM. At state j and j, no observa-
tion is generated. That is, the external behaviour of a
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state with M branches is to generate G(O,Mjk, ij),
I <k<M distributed observations with probability c,,
1 <k<M. An analogous illustration can also be found
in Ref. [6].

Fig.1 [Illustration in Ref. [5] to the mixture model

2 Parameter Estimation of Continuous HMM
Based on Optimal Sequence

The mechanism of generating observations in the
HMM shows that both the choice of branch and the
choice of the next state are in terms of some discrete
distribution. This is why we can design a training al-
gorithm based on optimal state and branch sequences.
Before formulation of the algorithm, its relation to the
BW and KV algorithms will be presented.

2.1 Relationship with the other two algorithms

Our algorithm, the BW algorithm and the KV al-
gorithm are all optimal procedures based on maxi-
mum-likelihood but differ in respective optimal objec-
tives. For the training sequence O, the BW algorithm
aims at a maximum of P(O | A). In all the probability
formulas of this paper, the occurrence of observation
sequence O means that the observation sequence falls
into a little neighbor field of O (Because in a continu-
ous distribution, the probability that the observation
sequence equals a specified value is equal to 0). And
in all the formulas, a common factor ( general volume
of Ao) is omitted which will not change the ratio of
probabilities. The KV algorithm tries to maximize
mQale( 0,0 | )) (Q is the state sequence), while our

algorithm wants to find rgakxP( 0,0,K|)\) (K is the

branch sequence). As to the optimal objective, the re-
lation between our algorithm and the KV algorithm is
the same as the relation between the KV algorithm
and the BW algorithm, that is, the connection between
maximum and sum. In many applications, the maxi-
mum is a good approximation to the sum and the
difference between them is very small if only the ob-
servation sequence is long enough.

It should be pointed out that although the KV al-

gorithm uses man P(0,Q | A) as its objective func-

tion, it determines the branch sequence by K-means
clustering instead of summing the probabilities over all
possible branch sequences in practical implementa-
tion. The difference between our algorithm and the
KV algorithm lies in the way to determine what is the
most likely state and branch sequence. In our algo-
rithm, the Viterbi algorithm is used to determine opti-
mal state and branch sequences directly. Not using K-
means clustering, which is sensitive to the initial clus-
ter, the determination of the optimal branch sequence
is more creditable in theory and takes less time.
2.2 Determination of optimal state and branch
sequence

Viterbi is the classical algorithm to determine op-
timal path in dynamic programming. In our algorithm,
the Viterbi algorithm is used to determine optimal
state and branch sequences. To do this, an auxiliary
function is defined.
8,(J, k) = qhgl%,,‘ P(qy, Qs i ki kg kg, =

Kok ook

Jok =k, 0,,0,,...0, 1) t>1 (3
8,(J, k) =P(q, =j, k, =k, O, ‘ A) =
;¢ GO, pjs X5) (4)
Then the following recursive relationship holds:
8,.1(J, k) = 1122%/[6,( i, 1) aU] CjkG( 0., ’Mjk’z_jk)
IsisMm
(5)
and the joint probability for optimal state and branch
sequence and observation sequence O can be derived:
maxP(0, Q,K | X)) = max 8,(j, k) (6)
e 1512
where L is the length of the observation sequence.
2.3 Parameter estimation based on optimal state
and branch sequence
Similar to the two classical algorithms, our algo-
rithm achieves optimization also by iteration. There
are two steps in iteration at time ¢: the first is to com-
pute
(Q" (1-1). K" (1=1)) =arg maxP(0,0. K| A(1~1)

(7)
where A(t—1) is already known. The second is to de-
termine
AL =argmAaxP(O,Q*(t—l),K*(t—l) A (8)

where (Q"(t-1),K" (t-1)) has already been ob-
tained in the first step.

To accomplish step one, we can resort to the re-
cursion (5) and backtracking. Now, let us turn to esti-
mation of parameters of the HMM with optimal state
and branch sequence already known.

For the sake of convenience, we throw off the
time mark,and let Q" (¢t -1) =Q" =1{q,, ¢»» ---» 4.}
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K" (t-1)=K" ={k,, k,, ..., k, }. By the monotonicity
of logarithms, the optimization of log-likelihood is
equivalent to the optimization of likelihood. Then
logP(0,Q" (1 =1),K"(t =1) | A) =
logP(Q" | A) +1logP(K* |[Q", 1) +
logP(O Q" . K" A)

z ZN loga, + ZMlogn- +

22%@%+22mw> 9)

where N, is the times of occurrence of ¢, =i, q,,, =Jj
in optimal state sequence from =1 to L -1, and M, is
the times of occurrence of g, =i. In fact, M, is equal
to 0 or 1. Similarly, L is the occurrence times of g, =
J» k, =k in optimal state and branch sequence from ¢ =
1 to L. And O, is the observation at ¢ which satisfies ¢,
=j, k, = k(1 <t<L), namely, O, is the observation
generated by branch k of state j.

The items in Eq. (9) depend on different param-
eters so they can be optimized separately. Optimizing
over the first three items with the constraint condition
(1) and (2), we can get

2N 2M o)

The last item in Eq. (9) is the sum of several inde-
pendent log-likelihood. They can also be optimized
separately.

For the branch k of state j, supposing observa-
tions xj(.k” , xj(.,f), x”) are generated by the maximum-
likelihood estimatlon of multivariate normal distribu-

tion, we get
- »
My = l E x;0

G e,

The estlmated parameters in Eqgs. (10) and(11)
are similar to the results of the KV algorithm because
both are estimations based on some certain state and
branch sequence.

2.4 Proof of convergence

The Zangwill global convergence theorem, which
is the most important theoretic tool in analysis of
algorithm’s convergence, will be used to prove the
convergence of the algorithm in the paper.

A continuous HMM A = {m, A, C,u, 3'} can be
viewed as a point in the space R’ ( Where p is the
number of parameters to model a continuous HMM) .
All valid models which satisfy the constraint condition

(1)
_I;v_/k)T

(1) and (2) form a closed subset of R”, named as A.
Usually, only HMMs with bounded parameters make
sense, so the boundedness of A is often assumed'*”
With this assumption, A is compact because it is a
bounded and closed set in R”.
The algorithm in the paper can be written as a
compound mapping.
T T

/\(t—l);'(Q*(t—1),K*(t—1))—_>)\(t) (12)
(Q"(t-1),K"(t-1)) is defined in Eq. (7) and A(?)
is defined in Eq. (8). Assume S is the set of all the
possible state and branch sequences. It is easy to see
that 7,: A—S is point to set and 7T,: S—A is point to
point, while the compound mapping is point to set.

T: A—A, T=T,oT, T(A) =Y, T,(s)

(13)

Before the proof of convergence, several defini-
tions and a theorem'® are introduced first.

Definition 1  Suppose I C X is a solution set
and A is an algorithm on X. A real continuous function
Z on X is called an ascent function for I" and A, if O
Z(y) >Z(x) forxg¢ ' and y e A(x); D Z(y) =Z(x)
forxe ' and y e A(x).

Definition 2 For a point to set mapping A: X—
Y, we say A is closed at x e X if x,—x, x, € X and y,
—y,y, € Yimply ye A(x). We say A is closed on X,
if A is closed at all x € X.

Theorem 1 Global convergence theorem

Suppose A is an algorithm on X, let {x,};_, be
the sequence generated by A such that x,,, e A(x,),
for some x, € X. I'C X is a solution set if (D All the
points in {x, }_, are contained by a compact set S C
X; (2 There exists a real continuous function Z on X
which is an ascent function for I" and A; 3 A is
closed on X — I'. Then the limit of any sub sequence
of {x,};_, is a solution.

To prove the convergence, the following proposi-
tions are introduced and proved.

Proposition 1  Suppose I" C A is the fixed
points set of mapping 7 which is defined in Eq. (13),
that is, "= {A | A € T()) }. For the given observation
sequence O, f: A—R, f(A) = ((‘g,r}(a})isP( 0,K,0|)) is

an ascent function for I" and 7.

Proposition 2 The mapping T which is defined
in (13) is closed on A.

Proposition 3 The algorithm in this paper con-
verges to the fixed points set of the mapping 7 in Eq.
(13).

Proof Theorem 1 gives three conditions for an
algorithm’s global convergence. For condition (1), we
made the assumption of boundedness of A which ensures
that A is compact. For condition (2), we can infer from
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proposition 1 that f: A—R, f(A) = (énlgst(Q, K,0|))

is an ascent function for /" and T. As to condition (3),
proposition 2 tells us that the mapping 7 is closed on A
which ensures its closedness on A — I". Now, our algo-
rithm in the paper satisfies all three conditions in the the-
orem, so the algorithm converges to I, namely, the fixed
points set of the algorithm.

3 Results and Discussion

Our paper tests three algorithms on training of the
HMM in face recognition. The generation of observa-
tion sequences and selection of features are in accord-
ance with Refs. [9, 10]. That is, scan face images in
raster order with a sampling window of size 16 x 16
with 75% overlap to generate observation sequences
and take the first 10 significant DCT coefficients of the
subimage as features. An ergodic model with three
states and each state with two branches is selected in
the test and the logarithm method is used to deal with
very small probability. The experiment is tested on the

ORL database and five face images per person ( total
200 images) are used to train the model while the other
five face images are used to test. For general purposes,
a total of 10 sets are used to train the model, including
nine sets selected randomly and one set which has been
often used by other references.

The results are shown in Tab. 1, where SB de-
notes our algorithm. The item of “training set” in the
chart refers to the numbers of training images in the
ORL database. The implementation of the algorithms
has not been optimized, which makes running time a
bit longer, but it does not change the relative complex-
ity of three algorithms. As indicated by the results, the
three algorithms have close recognition rate but differ-
ent training time. It takes much more time for BW to
train the model than the other two. On average, our al-
gorithm has the best performance on both recognition
rate and training time. Furthermore, our algorithm is
least sensitive to the training set while the other two
depend largely on the training set.

Tab.1 Results of three algorithms tested on ORL

Recognition rate/ %

Training time/( s-model ')

Number Training set

BW KV SB BW KV SB

1 1,2,3,4,5 99.5 98 99 235.9 23.2 48.9
2 1,8,7,10,6 97.5 96 97.5 199.0 54.1 60.7
3 8,1,4,6,5 94 94 95 233.2 74.7 54.4
4 2,4,8,10,1 98.5 98 98.5 278.8 186. 1 60. 0
5 6,1,10,4,9 97.5 98 97 330.9 26. 1 56.0
6 5,9,1,2,7 97 97 98 379.1 38.9 49.9
7 1,7,8,3,5 99 99 99 161.9 102.0 50.6
8 7,3,10,2,8 97 97 97 167. 4 113.1 43.6
9 4,7,8,9,3 98.5 99 98.5 267.9 83.2 105.1
10 10,6,5,8,9 95 95 95.5 226.3 12.5 32.5

Average 97.35 97.1 97.5 248.0 71. 4 56.2

4 Conclusion

An optimal state and branch sequence based pa-
rameter estimation algorithm of continuous HMM with
ML as optimal objective is introduced. It is different
from the KV algorithm in that only the Viterbi algo-
rithm is used to determine optimal state and branch se-
quence. When there is only one branch in every state,
the two algorithms will predigest to the same one. The
results of the three algorithms tested in face recogni-
tion indicate that our algorithm achieves the best aver-
age performance on recognition rate and training
time.

Appendix

Introductory proposition 1 Suppose dual func-
tion f: X x Y—R is continuous on Y, and Vy e Y,
f(x,y) can attain maximum on X, then function
g YoR, g(y) = I?Ea;(f(x, y) is continuous on Y.

Introductory proposition 2 Suppose dual func-

tion f: X x Y—R is continuous on both X and Y and M
is a point to set mapping where M(x,), Y x, € X is the
set of all the y which maximize f(x,, y), then M is
closed on X.

Proof of proposition 1 (D) For a given observa-
tion sequence O, P(Q,K, O | 1) is a continuous function
defined on S x A. Its continuity on A can be seen from
formula (10). It is continuous on S because S is a dis-
crete set which has finitely many isolated points. Then
we can infer from introductory proposition 1 that f{A) =

QmKa)le P(Q,K,0 | )) is continuous on A.
(0,K) e

@) In the iteration of our algorithm we have A(f)
eT(A(t-1)).As to fA(D)) =f(A(t-1)), we have
{g@(}){P(O,Q,K\)\(t))B“)P(O,Q*(t—l),K*(t—l) |

AD)=PP(O,0"(t-1),K" (t-1) | A(t-1)) and
P(O,Q7 (1-1),K"(1=1) | A(t-1)) =f2?}(XP(0,Q,
K|A(t=1)), 50 IA(8)) =f(A(t -1)). The inequali-
ty (2) is strict unless A(f —1) e T(A(¢ —1)). That ine-
quality (1) becomes equality implies (Q " (¢ —1), K" (¢
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-1)) e T, (A(1r)) which results in 7,((Q" (¢t - 1),
K'(t-1)))eT,oT,(A(1)), that is, A(t) € T(A(?)).
From the two conditions above, it is easy to see that for
our algorithm 7, the solution set I” which ensures the
ascent of f{A) is the fixed points of 7.

Proof of proposition 2 From the proof of prop-
osition 1, for the given observation sequence O, P(Q,
K,O | A) is a continuous function defined on S x A.
T,(X) is the set of (@, K) which maximize P(Q, K, O

| A), from introductory proposition 2 we known that
T,: A—S is closed on A. Similarly, 7,: S—A 1is closed
on S. Let us prove the closure of T. Suppose that (1)
AP SAL e A AP eAd; @AY 5, AP e
T(AM). If we can prove A, e T(A,), then we know
that 7 is closed on A. Now, choose (Q"”, K" ) e
T,(A") so that AYY e T,((Q", K*)), because (@,
K") e S, and for observation sequence of finite
length, there are finite points in S. Then {( Q””,
K")}7_, must have invariant sub sequence {(Q"?,
K"y, (", K*) = (Q,, K,) € S. That T, is
closed implies (Q,, K,) € T,(\,). At the same time,
(@™ K") (0, Ky). A5¥ e (@™, K™)), A
—A,, while T, is closed, then A, € T,((Q,, K,)) €T, o
T,(A) =T(A)).
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