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Compression of finite element hybrid mesh
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Abstract: A method for encoding and compressing finite element models is proposed. The model may be various

non-simple topological structures and contain any combinations of beams, triangular elements and quadrilateral

elements. First the model is subdivided into simple meshes that are orientable and manifold. Based on the

Edgebreaker algorithm, 13 labelled pairs are introduced for quadrilateral meshes and five other labelled pairs are

introduced for triangles. Then the connectivity information of mixed triangle/quadrilateral meshes is coded in a

direct manner. Two other bits are used to record the wireframe information. For the pure wireframe model,

Taubin’s method is extended to compress it. The compression algorithm is implemented and evaluated.

Experiments with several models show that the method achieves excellent compression ratios.
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Finite element analysis is time consuming. For a
complex model, it will take lots of time to solve it.
Zeng'" shows us that a web based system can shorten
the time. In such a system, the finite element model
(FEM) is prepared on the client side, and then the re-
sult of the finite element model can be sent to an FEM
solver on the server side. Benefitting from the high per-
formance of a server machine or such technology as
parallel computing, the result will be obtained quickly
and transferred to the client. Such a system lowers the
requirements of performance of the client machine.

Due to the increase of the size and the complexity
of these models, the large storage space consumption
required for the standard representation of meshes
makes the manipulation and exchange of the models
over the Internet more and more problematic. In gener-
al, a finite element model includes geometrical data, el-
ement information and attributes.

For the compression of finite element models,
many mesh compression methods can be referred

[2-5]

to The methods proposed by Gumhold and

3
Strasser'”’

, and Rossignac' only encode connectivity.
The method proposed by Touma and Gotsman'”' pre-
dicts geometrical properties better, and the method pro-
posed by Li and Kuo'* improves on the entropy enco-
ding of prediction errors. Bajaj et al.'® proposed an-
other method to encode single-resolution triangular me-

shes. It is based on a decomposition of the mesh into

Received 2004-08-16.
Biography: Zeng Jianjiang (1971—), male, associate professor, ezengjj

@ yahoo. com. cn.

rings of triangles originally used by Taubin and Rossig-
nac'”! in their compression algorithm, but with a differ-
ent and more complex encoding. All of these schemes
require O(n) total bits of data to represent a single-res-
olution mesh in compressed form.

Due to the following reasons, the above methods
cannot directly be applied to general finite element
compression:

e In finite element models, there exist several kinds
of elements simultaneously: triangular elements, quadri-
lateral elements, tetrahedral elements, hexahedral ele-
ments and beams etc. Therefore, the geometric model is
a combination of wireframes, triangles and quadrilater-
als etc.

e The topology of the finite element models is com-
plex. A finite element model may be non-manifold and
nonorientable.

1 FEM Mesh Topological Subdividing

Triangle and quadrilateral meshes are compressed
by region growing in our methods. The method asks for
an orientable and manifold model. So for a nonorient-
able and non-manifold mesh, the mesh will be subdivi-
ded into several orientable manifold meshes which will
be compressed separately.

If the original mesh is non-manifold, singular
points will be found by checking the connective rela-
tion of all vertices. The singular points will be duplica-
ted and recorded, then the original mesh can be divided
into several manifold meshes as shown in Fig. 1(a).
The nonorientable mesh can be divided into several
orientable meshes in the same way. The orient-collision
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edges will be split and the left and right triangles will
not share these edges. Finally an orientable mesh is ob-
tained (shown in Fig. 1(b)).

Duplicated vertex
Copy edge
—_—

Duplicated vertex

- %

Fig.1 Subdivide complex meshes into simple meshes by
splitting edge. (a) Non-manifold mesh; (b) Nonorientable mesh

It is obvious that the topology of the model has
been changed after the original mesh is subdivided into
an orientable manifold. In order to keep the original to-
pology, all the copied vertices should be recorded and
appended to the compressed file. After decoding the
mesh, all the duplicated vertices should be merged to
recover the topology.

2 Quadrilateral/ Triangle Mesh Compression

Now the model is manifold and orientable. For
the mixed triangle/quadrilateral meshes ( QT-me-
shes), one simple way to compress a quadrilateral
mesh or a mesh containing other polygons is to split
all polygons into triangles and to apply one of the tri-
angle mesh compression algorithms. To maintain com-
patibility with the original mesh, decompression may
need to delete the added edges and restore the original
quads. As a result, compressing these meshes by trian-
gulating all polygons may require encoding additional
information describing how to recover the original
polygon mesh structure from the stream of compressed
triangles.

Our approach to encoding QT-meshes is a gener-
alization of the Edgebreaker method for encoding tri-

angle meshes'*”

. King generalizes the algorithm to
quads by defining a more complex set of labels to re-
present the edges and vertices which have been previ-
ously visited. For the polygons, the number of combi-
nations may be computed via a recurrence relation
based on the fact that no unvisited vertex may be inci-
dent to a previously visited edge. The solution to this
recurrence for a polygon with n edges is the Fibonacci

number F(2n —1). For a quadrilateral, therefore, there

are F(7) =13 possible combinations of visited and
not-yet-visited edges and vertices.

King labels each quad with the two CLERS la-
bels of the triangles resulting from the split. The split-
ting rule therefore leaves only 13 possible label pairs:
CR, CC, LE, CS, SC, LC, SE, LL, LR, LS, SL, SR,
and SS. For comparison, consider that there are 23
possible pairs of adjacent symbols in the Edgebreaker
code for a triangle mesh, only 18 of which correspond
to adjacent triangles in the mesh, since any pair start-
ing with E includes two triangles from different bran-
ches of the spanning tree.

Fig. 2 shows the compression process traversing a
small region of a quad mesh and splitting the resulting
quads. The region pictured is a portion of a larger Q-
mesh. The current quad is light gray; previously visi-
ted quads are either dark gray or not pictured; not-yet-
visited quads are white; and quads pushed onto the
stack after each S have a diagonal pattern. The resul-
ting CLERS string for this region is CCSE-
SELCCRCRSESECRCRSRLESELE. The growing la-
bel strings are displayed adjacent to the corresponding
compression stages. Further details of the compression
process are given in Ref. [9].

Visited ™ Current
Fig.2 Encoding a Q-mesh

In practice, many QT-meshes have triangles as
only a small fraction of their faces, with 8% to 12%
triangles common in finite element meshes. We can
introduce a sixth label, T, to identify a triangle face,
thus representing each triangle as a label pair TC, TL,
TE, TR, or TS as shown in Fig. 3. By ensuring that
each label pair represents a single face, this approach
simplifies the design of the decoder and it makes it
easy to exploit the relationships between adjacent la-
bels and adjacent quads. This method is the most ef-
fective for such predominantly quadrilateral meshes in
which the cost of the extra T labels is low. Since the
Q-mesh compression algorithm above uses the same
CLERS labels as Edgebreaker uses for triangles, it
may be generalized to meshes containing both quads
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and triangles by a single CLERS label for each trian-
gle and using one of the 13 CLERS label pairs above
for each quad.

v-v vV
vV v-v

—»

Fig.3 Label pairs for the triangle

Finally we apply entropy coding to take advan-
tage of different frequencies of the symbols. Here a
predefined codebook is adopted. Due to the topologi-
cal properties of manifold meshes, an upper bound on
the total length of the mesh code is achieved. This op-
timization for a triangle mesh is similar to that de-
scribed in Ref. [8], so we elaborate on a quad mesh
with a minority of triangles, which is a case frequently

encountered in finite element models.
3 Wireframe Compression

If there are beam elements in a finite element mod-
el, the beam elements are treated as a wireframe. Many
finite element models include beams. For example, a
stringer, bar of beam and rib of the flight should be trea-
ted as beam elements. When the meshes are traversed,
the most wireframe will be visited. As shown in Fig. 4,
when introducing a new triangle, at most two wireframes
will be introduced. We can express all the four cases by
two bits. 00 means no wireframe, 01 means the left edge
is a wireframe, 10 means the right edge is a wireframe
and 11 means both edges are wireframes. For E triangle
is introduced, no wireframe is introduced since all neigh-

bors have been visited.
' ‘ Beam

(a) (b)

(e)

(d)

Fig.4 Four possible cases when a new triangle is intro-

duced. (a) No wireframe is introduced; (b) Left edge is a wire-
frame; (¢) Right edge is a wireframe; (d) Both edges are wire-

frames

For the quadrilateral mesh, two bits just deal with
half of the quadrilateral. Fig. 5 shows an example of a
Q-mesh with wireframes.

4 |
4

I I | l
10 01 o1 11 00

—— Beam —— No beam

Fig.5 Encoding the Q-mesh with wireframes

However, there are pure beam or bar element fi-
nite element models. For this kind of model, compres-
sion of wireframes is performed in a simple man-
ner'"”’ . Taubin’s method is extended to deal with wire-
frame compression.

Edges on a spanning tree are encoded as follows
by using the vertices’ IDs at both ends. For explana-
tion, we use the example of Fig.6(a), and assume
Fig. 6 is a wireframe, not a triangular mesh, and that
its spanning tree is also shown in Fig. 6. This spanning
tree can then be represented as 1234567 8 (9 10
11 12 13 14 15(16 17 18 (19) 20)21) 22). In this no-
tation, numbers indicate vertex IDs, the symbol “(”
indicates that the tree has a non-traversed branch at
the vertex immediately before, and the symbol “)” in-
dicates that the ID immediately before the symbol is a
leaf. Notice that the IDs are ordered in a strictly as-
cending order with an increment of one. Borrowing
the idea of run-length coding, this tree can then be co-
ded as 8(7(3(1) 1)1); each number means length of
a “run” of vertex IDs before it is interrupted by either
the symbol “(” or *)”. The run-length-encoded repre-
sentation of the tree is then encoded by an entropy co-
der.

10 11

9,
22. 8 2
19
20 17> 14
(b) c)

16 21

(a)

Fig.6 Ordering vertices by spanning tree

While our method for encoding and compressing
wireframes is simple, it is quite effective in most of
the data we tried. A symbol set with such a skewed
distribution can be encoded quite efficiently by using
any entropy coder. In addition, certain entropy coders,
such as dictionary-based algorithms, can recognize and
compress topologically repetitive features in the mod-
els quite effectively.
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4 Coordinate of Node Compression

Our algorithm assumes that a vertex coordinate is
represented by a three-tuple p = {x; y; z} of double
precision floating-point numbers. The current imple-
mentation of our algorithm employs a simple loss-less
compression method. In terms of data size, such coor-
dinate values are the dominant component among geo-
metrical data. In order to expose coherence that resides
in data, our geometrical compression algorithm relies
again on the one-dimensional ordering of vertices cre-
ated by means of the vertex spanning tree.

The algorithm compresses vertex coordinate x, y,
and z independently of each other. After the vertices
have been one-dimensional ordered, the algorithm
computes, for each coordinate, the first-order differ-
ence of coordinate values in order to reduce their dy-
namic range. Let us explain this for the case of coordi-
nate x. Given a vertex p,, a vertex adjacent to it on the
vertex tree is examined. Among the vertices adjacent
to p,, the previous vertex p,, is selected, and the differ-
ence dx(n, m) = (xn —xm) is computed. The list of
the first-order difference values are then entropy co-
ded. In our experiment, we used gzip, a popular gener-
al-purpose dictionary-based compression tool, for the
entropy coding.

We note, for the coarse models, small geometric er-
rors can be tolerated. Lossy surface compression methods
may be useful in this case. Such lossy predictive enco-
ding methods as Ref. [11] can achieve higher compres-
sion ratios.

S Experiments and Conclusion

We have implemented the algorithms described
in this paper and run them on some real-world mod-
els. Fig. 7 shows the models that are used to evaluate
our 3-D model coding algorithm. The model of a car
door in Fig. 7(a) includes triangle and quadrilateral
elements. The model of a car body in Fig. 7(b) is
more complex and includes triangle and quadrilateral
elements. The model of an aircraft includes triangle
and quadrilateral and beams elements.

(b)

(c)

Fig.7 Finite element model. (a) Car door; (b) Car body;
(¢) Aircraft

Tab. 1 shows the results of compression experi-
ments using the three models. Data sizes are indicated
in kilobytes, and compression ratios are indicated in
percentiles. We compared our method and gzip of Nas-
tran file for the compression ratios. As seen in Tab. 1,
the algorithm performed well for all of the models, a-
chieving high compression ratios.

In this paper, a method is developed to deal with
finite element model composed of triangle/quadrilater-
al meshes and wireframes. The complex model is trans-
formed into the simple meshes firstly. Then the connec-
tivity information is coded in a direct manner. Another
two bits will record the wireframe information.

Tab.1 Experimental results of the algorithm

Number Size of file/KB
Model
Vertices Triangle Quadrilateral Beam Nastran Gzip of Nastran ~ Our method
Car door 3832 294 3834 0 518 87.1 19.6
Car body 148 922 16 528 134 927 0 26 123 3895 927
Aircraft 32 845 5692 62812 20 684 9262 1035 352
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