Journal of Southeast University ( English Edition)

Vol.21, No.2, pp.170 —174

June 2005 ISSN 1003—7985

Surface edge element method for 3-D electromagnetic computation
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Abstract: A surface edge element method is proposed and implemented in the study of electromagnetic

scattering fields of general targets. The basis functions for surfaces of arbitrary shape are derived according to

the geometrical properties of each triangular patch. The proposed basis functions are 3-D linear functions and the

tangential components of the vectors are continuous as the traditional edge element method. Combined field

integral equations (CFIE) that include both electrical field and magnetic field integral equations are used to

model the electromagnetic scattering of general dielectric targets. Special treatment for singularity is presented to

enhance the quality of numerical solutions. The proposed method is used to compute the scattering fields from

various targets. Numerical results obtained by the proposed method are validated by results from other numerical

methods.
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Method of moment (MoM) for surfaces of general
targets''’ has been widely used in the studies of electro-
magnetics at high and low frequencies. The Rao-Wil-
ton-Glisson (RWG) functions are constituted within
pairs of adjacent triangular patches as the local ele-
ments to yield a current representation that does not
have line or point charges at sub-domain boundaries.
RWG to expand both electric and magnetic currents is
used to compute a dielectric-resonator'” ™. Zhang
et al. "' solved a low-frequency breakdown problem
using MoM with RWG. Sarkar et al. ' analyzed transi-
ent scattering from composite complex structures of ar-
bitrary shapes. However, only the information on sub-
meshes and their related medium parameters are availa-
ble when the computational geometry is subdivided in-
to triangular patches using commercial software. Thus
there is no information on the adjacent triangles for de-
riving the RWG functions that constitute a local ma-
trix. Consequently, one needs to search and store the
data of the neighboring triangular patches, rather than
just the patch itself, after the mesh generation.

An edge element method'”! was proposed by Ned-
elec in 1980. Like the nodal-based finite element model
(FEM), the edge element method (EEM) is only in-
volved in a local element, such as a tetrahedron in 3-D
computations. Bossavit'™® has implemented it to dis-
cretize the FEM formulation for eddy current problems
at low frequency and Ahn et al. " computed the scat-
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tering field using finite element-boundary element ( FE-
BE) with edge element. This method allows vector
fields to be used directly as variables since only the
tangential component on adjacent elements is constrain-
ed to be continuous. However, EEM is only exploited
in the integral equation for specific target shapes, such
as a rectangle!"”". The surface basis functions of EEM
in Ref. [9] was presented for the FE-BE computations
but the most important parameter, the corresponding
nodal basis function for surfaces of arbitrary shape, was
not presented. Therefore, a full establishment of the
surface basis functions of EEM for the surface integral
equation as reported in this paper is necessary in the
study of electromagnetic scatterings from general tar-
gets.

A novel edge-based MoM involving only one tri-
angular patch is proposed for surfaces of any arbitrary
shape. It is derived according to the geometrical prop-
erties of a local triangle as described in section 1. The
combined field integral equations (CFIE) including the
electrical field and magnetic field integral equations are
presented in section 2. The proposed method is imple-
mented for discretizing the CFIE. Finally, the method is
used to compute the scattering field and the results are
then compared and validated using those obtained from
FE-BE methods.

1 Surface Edge Element Method

1.1 Surface basis function

Suppose an arbitrary point P (x, y, z) shown in
Fig. 1 is located inside a triangular patch AP,P,P; on
the surfaces of a general object without any of its sides
parallel to the X, Y or Z axis. The nodal basis function
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in this case is a linear function of coordinates of P(x,
¥:2),

Ag=a,+bx+cy+dz (D
where a;, b, ¢; and d, are coefficients related to the size
and shape of the triangle.

Ps 7
A yd 0 !
P, P, X

Fig.1 A triangular patch

According to the properties of nodal basis func-
tions, we can get the following equation:
L xy oy a4 ki,
1 . _
| X, Y, 4 ||b _ ki (2)
A3 Y5 GG ks
0 n, n, n]ld, 0
where n,, n, and n, are the three normalized compo-
nents of a normal vector n of the plane AP,P,P,, and
K, =0if i#j, and K;; =1 if i = . The first three rows of
Eq. (2) are obtained according to the properties of
nodal basis functions. The fourth row of Eq. (2) is ob-
tained from the geometrical property of a nodal basis
function which is equivalent to the normalized plane e-
quation enclosing the corresponding edge on a triangu-
lar patch. However, there are many such planes and
hence the fourth row in Eq. (2) is imposed to select the
plane that is vertical to the local triangle patch as the
basis plane, for which Eq. (1) has a unique solution.
Therefore, one of the edge based basis functions
related to edge e = {i,j} is obtained as follows:
N, =A,VA; =2, VA (3)
Like the volume edge elements, the following identity
is always held,

N, -ij= +1 (4)
which makes sure that the tangential components of the
vectors are continuous between two adjacent elements.

The equivalent electrical and magnetic currents re-
lated to the tangential magnetic and electric fields on
the surface integration are written as

3 3
ZLL YnxH, =Y nxNH, (5
e=1 e=1
3 3 3
2 :—anEez—anN“Ec
e=1 e=1

(6)
where H, is an edge variable corresponding to the mag-
netic density, and E, is the equivalent electric field. n x

N,, is a constant in a normal direction to the edge E
such that the equivalent currents are continuous in the
normal direction of the adjacent elements to satisfy the

surface current properties.

The surface charge densities related to the diver-
gences of the surface currents are expressed using sur-
face EEM as follows:

3
Ved, =2 n-(VA;xVA)H, (7
e=1

3
VoM, =-2%n-(VA;xVANE (8
e=1

For the fundamental EEM, n-( VA; x VA) is a
constant and therefore, the divergence of current keeps
the same value on a triangular patch because of the low
order interpolation of the EEM.

1.2 High order surface EEM

In order to improve the accuracy of the numerical
solutions, a high order EEM for surfaces of arbitrary
shape is necessary. The advantage of Eq. (3) over the
RWG function is that the proposed method can be de-
veloped into high order methods since the format of
Eq. (1) is the same as that of the general expressions
of nodal basis functions. The high order edge element
still retains the features of the fundamental EEM and o-
vercomes the drawback that the divergence of the vec-
tor field is always zero. High order EEM is described
in Ref. [11] and hence one can obtain high order sur-
face edge elements readily.

2 Combined Field Integral Equations

Considering Fig. 2, the regions (2, and (2, are char-
acterized by the medium parameters (&,, w,, o;) and
(&5, ,, 0,) , respectively. According to surface equiva-
lence principles, the total fields (E, H) are determined
by a set of equivalent electric and magnetic surface
currents. The combined field integral equations for the
scattering field from the dielectric and lossy targets are
expressed, respectively, as

Eg(r) = [ki(ijk(r) +V @,(r) ]‘ +
[V x ) O'kF+(_]’2)gk ] (9)

H(r) = [;;(ijk(r) +V @ (r) ]mn _
[v x 3 4] (10)

k=1 Mk

where H(r) , E(r) represent the tangential compo-
nents of the incident fields. Here F,(r) and A, (r) are
the electric and magnetic vector potentials, and @, (r)
and @, (r) are the electric and magnetic scalar poten-
tials as well.

The surface of homogenous targets is subdivided



172 Yu Haitao

€2,/42,02

2,

Fig.2 General geometry for MoM solution

into triangular patches. The computation to the whole
region becomes the integral on each small element.

Applying the Galerkin method to Egs. (9) and
(10) and choosing the surface basis function as the
weighing function, one gets the dual integrals on the
source and field triangular patches. The expressions
corresponding to the vector and scalar potentials are
expressed as

Af =, ﬂn stidsg G(r,r)J(rYds’  (11)
F = U";iwg"gn x Ns,ngGk(r,r’)Ms(r’)dS’
(12)

i
o, +jwe,

koo_ . _
Pey = JJ;" sti v cDeU(r)dS

Qn x N.dS - V gGk(r,r’) V' J.(r)ds

(13)

oh = [nx N, 7 @, (nds ==L
u S’_ u Jka

Jln xN,dS -V gGk(r,r’) V' J.(r)dS

(14)
and the Green’s function
G ,) e [r=r'|
r,r'y = ——
k( ’ 4’TI' ‘ r— r, ‘

with k, = /@’ &, — jou,o, and the subscript k=1, 2

for the homogeneous interior (k =1) and homogene-

(15)

ous exterior regions (k =2), respectively. The com-
plex wave numbers of the interior and exterior regions
are given by k, and k,, and the vectors r and r’ repre-
sent observation and source points, respectively.

The integrals of the incident fields on the field
point triangle are expressed as

B, = ﬂn x N, - H™(r)dS (16)
Si

B, = ﬁn x E™(r)dS (17)
5,

We need to consider the singularity problems
about 1/R and V (1/R) where R = |r —r'
lytic expressions must be used on integrals on both the

, and ana-

source and field triangles when the two points are lo-
cated at the same triangle. If the distance between the

source and field points is less than half of one wave-
length, one needs to use the 3-point or 7-point Gaussi-
an quadrature to approximate the integrals. However
the computational speed will decrease greatly as the
Gaussian quadrature points increase, therefore one has
to use different approximation methods according to
the individual situation.

Applying the proposed surface basis functions
and current expressions to Egs. (11) to (15), one can
get linear and complex equations as

E.

K..{H’}z{B.} (18)
y y J
where K; is the impedance matrix and the right hand
can be obtained from Egs. (16) and (17).

The impedance matrix K is full. The precondi-
tioned bi-conjugate gradient method is implemented in

the computation of the numerical solutions.

3 Numerical Examples

In this section, numerical results are presented for
the scattering field under plane wave illumination u-
sing the proposed method.

3.1 A dielectric cube

The first example considered here is the plane
wave scattering from a dielectric cube, 20 cm on each
side. The incident field is 1 V/m coming through the
Z axis at a radar frequency of 300 MHz. The proposed
edge-based MoM is implemented to compute the scat-
tering field at 100 m away from the center of the tar-
get.

Tab. 1 shows the numerical results with different
meshes ranging from 12 to 192 triangles, which are
obtained using the edge-based MoM. The permittivity
of the cube is g, =9.0 and o =0. The computational
results at @ =0° are convergent and are close to 1 mV/
m when the meshes are increased. From Tab. 1, it can
be seen that the numerical errors are less than 4%
once the edge size of the triangles is less than 0. 1
wavelength.

Fig. 3 shows the scattering electric field on the

Tab.1 Comparison of scattering electricalfield

Number of Triangles Scattering electric field/(mV-m~")

12 0.7950
48 0.9630
108 0.9820
192 0.989 8
300 0.994 0
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XOZ plane with the angle # varying from 0° to 360°
with a test radius » = 100 m. The permittivity here is &,
=4.0 and the conductivity is o =0. The geometry of
the cube is subdivided into 48 triangles with 27 nodes
on its surfaces. There are 70 edges on the surfaces. For
comparison, the numerical results by FEM-BEM at the
same triangles on the surface are also presented.
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Fig.3 Scattering field with £, =4.0 and ¢ =0

Fig. 4 shows the scattering electric field on the
YOZ plane starting at the Z axis with the angle ¢ var-
ying from 0° to 180° with a test radius » = 100 m. The
conductivity o =0.02 S/m, and the permittivity and
meshes here are the same as that in Fig. 3. FEM-BEM
results are also used for comparison.
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Fig.4 Scattering field with ¢, =4.0 and ¢ =0.02 S/m

For a homogenous target, the MoM is superior
than FEM-BEM since only the surfaces of the target
are meshed using the former while the whole target is
required to be subdivided into tetrahedrons for the lat-
ter. Therefore, relatively fewer unknowns are required
using the proposed MoM.

3.2 A dielectric cylinder

The second example of MoM application is to
compute the scattering field from a dielectric cylinder,
2.54 cm in both diameter and length with £, =9.0
and ¢ =0. 01 S/m. The cylinder is subdivided into 48
triangles. Results shown in Fig. 5 are computed by
using the proposed MoM and then compared with
those from FEM-BEM.
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Fig.5 Scattering electric field by MoM and FEM-BEM

4 Conclusion

The new edge-based MoM in the present work is
robust and flexible to use in the computation. Results
for solving the scattering field have been given in sev-
eral cases of dielectrics. The surface edge element
method keeps the same features as those of the vol-
ume edge elements and can easily be developed into
high order elements since the format of surface ele-
ment method is the same as that of normal edge ele-
ments. Results show that scattering field is conver-
gent, and accurate solutions are obtained without using
many unknowns. Finally, the numerical results ob-
tained by the proposed method are compared and vali-
dated by those from FEM-BEM.
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