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Accelerating SAGE algorithm in PET image reconstruction
by rescaled block-iterative method
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Abstract: A new method to accelerate the convergent rate of the space-alternating generalized expectation-
maximization (SAGE) algorithm is proposed. The new rescaled block-iterative SAGE (RBI-SAGE) algorithm
combines the RBI algorithm with the SAGE algorithm for PET image reconstruction. In the new approach, the
projection data is partitioned into disjoint blocks; each iteration step involves only one of these blocks. SAGE
updates the parameters sequentially in each block. In experiments, the RBI-SAGE algorithm and classical SAGE
algorithm are compared in the application on positron emission tomography ( PET) image reconstruction.
Simulation results show that RBI-SAGE has better performance than SAGE in both convergence and image quality.
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The expectation maximization maximum likeli-
hood (EMML) algorithm has been found to produce
good reconstruction results, but it has an extremely
slow rate of convergence and thus a large number of it-
erations may be required to yield an acceptable image.
A variety of methods have been proposed for accelera-
ting the EM algorithm. One popular and effective
method to speed up the reconstruction process is the
ordered subset EM (OSEM) method proposed by Hud-
son and Larkin'"'. They proved the OSEM convergence
for a special case, in which the chosen subsets satisfied
the restrictive “subset balanced” condition. Byrne de-
veloped a rescaled block-iterative version of EMML
(RBI-EMML)"™ . 1t is an accelerated block-iterative
version of EMML that converges, in the consistent
case, to a solution, for any choice of subsets (blocks).
The space-alternating generalized expectation-maximi-
zation ( SAGE) algorithm proposed by Fessler and
Hero' is another way to overcome the shortcomings
of the EM algorithm. It is based on the fact that hid-
den-data spaces used by SAGE have less information
than the conventional complete-data space, thus yield-
ing a significant improvement in convergence rate. In
addition, SAGE updates the parameters sequentially,
which makes its M-step be treated easily.

In this paper, a novel algorithm, namely BRI-
SAGE that combines RBI algorithm with SAGE algo-
rithm is proposed for PET image reconstruction. In the
new approach, the data is partitioned into disjoint
blocks, each iteration step involves only one of these
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blocks. If there is only one block which contains all
the data, RBI-SAGE reduces to the SAGE. Some ex-
perimental results are provided to illustrate the effec-
tiveness of the proposed algorithm.

1 Review of Relevant Algorithms

In emission tomography, according to the as-
sumption that the observed photon counts are inde-
pendent Poisson random variables over the region of
interest' , we have

Y, = ;NU + R, ~ Poisson{ D P, +r,} (D
J

where Y, denotes the i-th detector recording emissions
which include the photon counts emitted by all pixels
and the numbers of emissions brought by background
events. {R,} are also independent Poisson variables: R,
~ Poisson {r,;}. Background rates {r;} are assumed to
be known. The element of system matrix p,; represents
the probability that an emission from pixel j is recor-
ded at detector i. x; is the expected value of pixel j.
The log-likelihood for this problem is given by

L(x) = logfly;x) = D (ylogy,(x) —y,(x))
(2)
yi(x) = zpijxj +7; (3)

Thus, the EM algorithm'”', starting with a strictly pos-
s written as

W = e (x)/ Y p, @)
ej(x(k)) = Zpijyi/yi(x(k)) (5)

where k is the iterative number. Under the assumption

of {r,} being zero, the iterative step for the RBI-EM

algorithm can be written as follows'':

itive vector x
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A =X (0 Zpif);pif(yi/ Zp,-,xjm -1)

(6)
where the rescaling factor 7, for the 7-th block S, ¢ =
1,2, ...,n,is given by

T = mjm( Zplj/ [25 p,j,') (7
From the RBI-EMML algorithm described
above, it can be seen that RBI-EMML reduces to OS-
EM when the restrictive “subset balances” condition
holds. It is demonstrated that the RBI-EM algorithm
converges to the correct solution for any choice of
subset (block) in the consistent case for linear equa-
tion y = Px. On the contrary, the RBI-EM produces a
limited cycle, how distant from one another the vec-
tors of the limited cycle depend on how large the min-
imum value of KL(y, Px) is'". Here KL(y, Px) is
the Kullback-Leibler distance, defined for nonnegative
vectors y and Px by

1

KL(y, Px) = Y (ylog(y./(Px),) +(Px), —y) (8)
i=1

where (), denotes the i-th component of the vector.

2 RBI-SAGE Algorithm

Both the OS algorithm and the RBI algorithm are
useful methods to speed up the image reconstruction
for EMML. But the “subset balance” condition that
the OS algorithm should satisfy is not necessary for
the RBI algorithm. This is one of the reasons that we
choose the RBI for accelerating SAGE algorithm. The
SAGE algorithm was described in detail in Refs.
[8,9]. The RBI-SAGE method we discuss here does
not require much time in each iterative step compared
with the SAGE algorithm; moreover it needs few iter-
ation steps. Thus, it can reduce significantly the com-
putation time in the reconstruction process. The RBI-
SAGE algorithm can be outlined as follows.

LetS,t=1,2, ..., n be a block (not joint),
where ns is the block number.

Initialization: Let £'" be a positive starting image
vector.

For k=1, 2, ... until convergence of £, where
£ denotes the estimate of x after k iterations.

For t=1,2, ..., n (loop on blocks)

For a given block, setup a start image vector: x'”
=x".

For a given block and a start image vector, calcu-
late the initial projection:

D W
j
where J is the dimension of image space.
For [=1,2,...,J (loop on image space)
E-step:e=y,/y; -1, ¢, = Y pe

ieS:j=12..J

T = mlin( Z,Pil/ Zpil)

ies,

M-step: 3 ;" = x¥ + 7, (%0 e/ an)
i

(k+1) _ (k)
X, =x, q#l

Update: y; =y; + (""" -x;")p, Vi a,#0
Endfor

For the next block, we take £*' =x"**"
Endfor

Endfor

3 Experimental Results

Some reconstructed results using SAGE and RBI-
SAGE are presented to illustrate the effectiveness of
these algorithms. Fig. 1 shows the phantom used in
our experiment. The relative activities of the elements
are shown in Fig. 1. The total photon count of the pro-
jection data is 10°. The sinogram has 128 radial bins
and 180 angles. The size of a pixel is 6 mm x 6 mm
and the size of the image matrix is 384 mm x 384
mm. The reconstructed images are 64 x 64 pixel matri-
ces. The projection data, including 25% uniform Pois-
son background noise, is calculated, and the recon-
structed images are shown in Fig. 2.

Fig.1 A simulated phantom

(a) (b)

(c) (d)
Fig.2 Reconstructed images. (a) SAGE reconstruction u-
sing noise free projections; (b) RBI-SAGE reconstruction using

noise free projections; (¢) SAGE reconstruction using noise projec-
tions; (d) RBI-SAGE reconstruction using noise projections
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Fig. 3 displays the log-likelihood versus iteration
numbers for the SAGE and RBI-SAGE algorithms.
We can observe from Fig. 3 that the log-likelihood of
RBI-SAGE increases more rapidly than the log-likeli-
hood of SAGE. Fig. 3 indicates that the RBI-SAGE
algorithm converges faster than the SAGE algorithm.
We also use the mean absolute error (MAE) and chi-
square error (CSE) to evaluate the quality of recon-
structed images. The MAE is defined as

1 J
- rec _ _org
EMAE J ,Zf ‘X, xj ‘

(9
where x;”j and x;" denote the values of pixel j of the
original activity image and the reconstructed image,
respectively. MAE measures the average discrepancy
between the reconstructed image and the original ac-

tivity image. The CSE is defined as

sese = Y, [ylog(y/ 3" = (v, =¥")1 (10)
i=1

J
(k)
2 P
=

o _
i =

(11)

11
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Fig.3 Comparison of log-likelihood increase versus iter-

ation number k. (a) Projections without noise; (b) Projections
with noise

CSE measures the discrepancy between the calcu-
lated projections and the original projections. Figs. 4 and
5 display the MAE and CSE values of the reconstructed
images using SAGE and RBI-SAGE, respectively. The
results show that the MAE and CSE values using RBI-
SAGE decrease more rapidly than those obtained with
SAGE even if the statistic noise is presented.
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Fig.4 Mean absolute error of reconstructed images. (a)
Projections without noise; (b) Projections with Poisson background
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Fig.5 Chi-square error of reconstructed images. (a) Pro-
jections without noise; (b) Projections with Poisson background

noise
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4 Conclusion

Now, the conventional back projection algorithms
are still in use. This is because the EMML algorithm
has two main disadvantages: lack of termination crite-
rion and the slow convergence, which impede the
practical application of this promising method in the
modern PET units. In Ref. [3], Fessler and Hero have
proved that the SAGE algorithm easily accommodates
smoothness penalties and converges faster than the
EMML algorithm. Due to the similarity with the
EMML algorithm, ideas used to speed up the EMML
algorithm can be used to speed up the SAGE algo-
rithm. Therefore, we have proposed a new approach
named RBI-SAGE that combines the RBI algorithm
and SAGE algorithm for PET image reconstruction.
The experimental results show that the proposed meth-
od is superior to the SAGE algorithm.
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