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Local polynomial prediction method
of multivariate chaotic time series and its application

Fang Fen Wang Haiyan

(College of Economics and Management, Southeast University, Nanjing 210096, China)

Abstract: To improve the prediction accuracy of chaotic time series, a new method formed on the basis of local
polynomial prediction is proposed. The multivariate phase space reconstruction theory is utilized to reconstruct
the phase space firstly, and on its basis, a polynomial function is applied to construct the prediction model, then
the parameters of the model according to the data matrix built with the embedding dimensions are estimated and
a one-step prediction value is calculated. An estimate and one-step prediction value is calculated. Finally, the
mean squared root statistics are used to estimate the prediction effect. The simulation results obtained by the
Lorenz system and the prediction results of the Shanghai composite index show that the local polynomial
prediction errors of the multivariate chaotic time series are small and its prediction accuracy is much higher than
that of the univariate chaotic time series.
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In practical problems, it is hard to build up exact analytic models for complex systems (such as the stock
market) because their constructions are very intricate and the information available is incomplete and inaccurate.
Complex systems are usually analyzed by time series observed or measured from the systems. In the conventional
prediction studies, most of the methods are based on the univariate chaotic time series. However, the multivariate
time series can always be observed or measured from the complex system. The prediction errors with multivariate
chaotic time series are much smaller than those with univariate chaotic time series when using the local mean pre-
diction, local linear prediction and BP neural networks prediction'" . In this paper we extend the local polynomial

.. 2,3 . . . . . . . . . .
prediction method'>*! from the univariate chaotic time series to the multivariate chaotic time series.

1 Phase Space Reconstruction
Suppose that we have observed an M-dimensional multivariate chaotic time series {x,}"_, = (X100 Xg s eees

Xy.) }Y_,. As in the case of a univariate time series (where M =1), we make the time delay reconstruction:

vV, = {xlwn,xly,,_,l, s XLy myry > X2, 0 X nrys ooos X (my—yry> o
Xat s Xatmeryys ++ s Xat (myg—t) Tt } n=Jy,Jy,+1,...,N;J, = 113,-1)1(\4(’"" -7 +1 (1)
. . . . . . 4,5 .
where 7, m.(i =1, 2, ..., M) are the time delays and the embedding dimensions, respectively'*”'. Following
M

Takens’s delay embedding theorem'®', when m = 2 m; or each m; is large enough, there exists an M continued

i=1
function f;: R"—R, such that
Xewr =f(V,)  i=1,2, ..M (2)
Thus the evolution from V, to x, ,,, reflects the motion of the original unknown dynamics. This means that the ge-
ometrical characteristics of the attractor in the reconstructed space are equivalent to the original state space. So any
differential or topological invariant quantities computed for the reconstructed attractor are identical to those in the
original state space.
We find the time delays 7, with the mutual average information method'®”" separately for each univariate

time series {x,, V¥_,,i=1,2,...,M. We use the same method for choosing the embedding dimensions m;, as that

of Ref. [5].
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2 Local Polynomial Prediction of Multivariate Chaotic Time Series

Suppose that the state vector at time 7 is V. Time p later than T on attractor is approximated by the function

X174, =f(Vr) (3)
where x, ;. , is determined by the d-th order polynomial f;( V)

my -1 my -1

~ _ 5} (1)
X1, T4p =f(Vy) =/, + Zﬂkl X1ty Foee F 2 dhiky.rkg X1 T—ky7y K Tk T
£ =0 kg =kg_1, . ko =ky. ki =0
my —1 my —1
(2) (2)
2 W X2 1-ky7y Toee 2 St kg X2, 7ok17y -+ Xrt 7ty F oo T
=0 kg=kg_i, . ks =kj.ky =0
myr—1 myr—1
(M)
2 1k, XM rkyzy Toee T z fdl\lkz dg KM, Tkyzpy XM, Tokyryy 4
K1 =0 kg=ky_1 Ky =ky, ky =0

In the local prediction method, the change of V, with time on the attractor is assumed to be the same as those
of nearby points, V;, (h=1,2, ..., k). Using k of V;, and V.
ficient of f is determined by the solution of the following equation.

1, +p» for which the values are already known, the coef-

v=Af (5)
where
T
v:{le+I)"xT2+p7 ""'ka+p} (6)
5} M) M) M) T
f= {fo’ﬁlo ) ""ﬂ(m]—l)’ - Ji0 s ""]dl(mM—lV coos Fatmy s myg =) (7)
. d .
and A is the k x s (s = 2 Co .. —M +1) matrix
i=1
1 2 d d
X o Xur-(m-ne Xur oo Xur e Xur o Xyr o (my-ry
1 x X x x! X x¢
A= LT, e 1,Tzf.(m1—1)n LT, e {.Tz e M, e MvTZ’f’"M’l)TM (8)
1 2 d d
Xig, v X Te-m-nr XLT, e XLm, e Xmre et XM T (my -y

In order to obtain a stable solution, the number of rows in the matrix A must satisfy the given relation:
k=s 9
In this paper the polynomial order d is taken as d =2, and p is taken as p =1 in Eq. (4). Furthermore, in or-
der to evaluate the prediction result, we use the following indices, namely the root mean squared prediction error
(RMSE) and normalized mean squared prediction error (NMSE) described in Ref. [1].

3 Simulation

dx _ bx.. wh ~10,R =28
& 3 = %% = bx;, where 0 =10, R =

and b =8/3. The initial points are x, , =15. 34, x, , =13. 68 and x; , =37. 91 and the step length of the integral is
h =0.04. We use the fourth-order Runge-Kute integral method and obtain two simulated time series of x, and x,

. dx, dx,
Consider the Lorenz system —— =o(x, —x,), O o (R -x;) —x,,

individually with 1.21 x 10* data points. To reduce the influence of transition, we abandon first 10* data points
and only keep the last 2 100 data points. The former 2 000 data points are used to train samples and the latter 100
data points are used as a prediction data set.

For the univariate time series {x, , 122, we obtain 7 =4 and m =3, We reconstruct a phase space with

(X1 > X1 4 4> X1 ,_g) . Then we get the specific one-step prediction equation‘
Xira =LV =/ + o’ xl r + xl ra 1 X1,7-8 +f;00 xl r + ol XX ra +
f;(); X1, 1X1, 78 +f;11 xl T4 +f;12 X1, 74X, 78 +f;22 xl 7-8 (10)
For the multivariate time series {(x, ,,x,,) }.o), we obtain 7, =7, =4, m, =2, m, =1
phase space with (x, ,, x, ,_4, X, ,). Then we get the specific one-step prediction equation:
X =H(Vy) =/ + 'xl A xl s+ X1 X1, +f ol XirXir-a T

(@)
211x114+f10 sz"’f;oo xzr (11)

The number of the nearest neighbors is 12 (i.e. k =12). The prediction errors are shown in Tab. 1.

. We reconstruct a
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Tab.1 One-step prediction errors of the last 100 data points

Method Time series k ERMSE ENMSE
Local polynomial Univariate 12 7.1x1073 8.0314x107’
Prediction Multivariate 12 1.2x1073 2.2941 %108

From Tab. 1, we can see that the predicted results with the multivariate local polynomial prediction method
are in extremely good agreement with the real time series, and the results are better than those with the univariate
local polynomial prediction method.

4 Application

As is well known, data of the stock market, e. g., stock prices, often shows greatly complicated behavior,
therefore it is very difficult to predict its movement accurately. In order to set up a good prediction model about
such financial indices, to seek a suitable variable affecting price index is important. In Ref. [ 8], the authors have
proven the chaos of Shanghai securities market, so we can apply the chaotic prediction method given in this paper
to the stock market. In this paper, as well as the composite index, the Chang index is considered, since it is one of
the key factors influencing the dealer’s mind.

We selected the Shanghai composite index and the Chang index as two variants and we used the multivariate
local polynomial prediction method to predict the Shanghai composite index. We selected 1 069 data points from
the Shanghai composite index and the Chang index individually from December 16, 1996 to May 28, 2001, and
we denote the Shanghai composite index (SCI) by P and the Change index by AP. From this we have the two va-
riants time series {P,},*] and {AP,}.% (where AP, =P, -P, ).

n=1 n=1
1069
n=1

In order to reduce noise, we use the linear logarithm diminish (LLD) method to {P,,}

ries {x, , }19 . where X, =InP, —(a +bn). We denote {AP, 1099 as {x,, }1% In order to compare the prediction

and get the time se-
n=1

result, we reconstructed the attractor in the following two ways. The first way is to reconstruct the attractor with
the univariant local polynomial prediction method. By the mutual average information method and false nearest
neighbor method'®', we get 7 =35 and m =12. So the reconstructed phase space is V, = (X0 s Xy Xpaps vees
X ot b

The second way is to reconstruct the attractor with the multivariate local polynomial prediction method. From
the mutual average information method and the method in Ref. [5], we get 7, =35, 7, =5, m, =5, m, =1. So the

reconstructed phase space is V, = {x, ., X; ;s X1 uo2rys X1 uoses X1nodrys X2 )

: . . . 1069 . . . 1 069
For the univariate time series {x, ,},-; or the two variant time series {x, ,, X, ,} the former 1 000 data

n=1>7
points are used as training samples and the latter 69 data points are used as the prediction data set. The number of
the nearest neighbors is 100(i. e. kK =100) . The prediction errors are shown in Tab. 2.

Tab.2 One-step prediction errors of the last 69 data points

Method Time series k ERMSE ENMSE
Local polynomial Univariate 100 2.6219 4.91x1072
Prediction Multivariate 100 7.63 x1072 8.4x1073
From Tab. 2, we also can see that the predicted results 0.10
with multivariate local polynomial prediction method are in 8:82
extremely good agreement with the real time series” as 5 8:83
shown in Fig. 1, and the results are better than the ones from 0 ; — Observed SCI
the univariate local polynomial prediction method. So it can :8:8% v | L Pre(lhcwd S.CI |
be said that the prediction with the multivariate local polyno- 10001010 1020 l(fé?ne /5 040 1050 1060107
mial prediction method is successful. Fig.1 Observed and predicted SCI of the last 69 data points

5 Conclusion

In this paper, we present a local polynomial prediction method of multivariate chaotic time series. All errors
show that this prediction method is better than the univariate one. Therefore, in practical applications, when multi-
variate time series data are available, we can use the proposed method to obtain better predictions.
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