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Reconstruction of density and wave velocity
from reflection and transmission data

Su Jingxun Liu Jijun

(Department of Mathematics, Southeast University, Nanjing 210096, China)

Abstract: Consider an inverse problem of reconstructing the coefficient in a linear wave equation on an
inhomogeneous slab with density p (z) and wave velocity c(z). The inversion input information is the
reflection and transmission data corresponding to a point source. By applying the characteristic theory for
hyperbolic equations, we establish an integral system from which p (z) and ¢ (z) can be recovered
simultaneously. In contrast to some known results, our inverse approach is carried out for depth variable, rather
than for travel-time variable. Therefore inversion results in this paper are more appropriate for the physical
interpretation of a medium slab.
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The problem of reconstructing the physical parameters of a layered-inhomogeneous medium from measurable
data on the medium surface has received much attention. Let z be the Cartesian coordinate measuring medium
depth and ¢ the time. Then the 1-D hyperbolic system governing the wave motion in isotropic elastic layered-inho-
mogeneous medium with density p(z) and lamé constants A(z),u(z) is'"

pow, +p.=0, p,+(A+2u)w, =0 (D)
where w(z, f) is the particle velocity and p(z, ) the pressure. The characteristic wave speed associated with Eq.

(1) 1s ¢(2) = V[A(2) +2u(2) 1/p(2).

By introducing the transformation x = f ) c?i ) which maps depth variable z to travel-time variable x, Eq.
0
(1) becomes
gwr +px:O’ pr+§wx:0 (2)

where {(x):=p(z)c(z) is the characteristic impedance.

For inverse problems based on Eq. (2) or other analogous equations, there are some works related to recove-
ring single parameters from reflection data'"”. Indeed, /(x) can be determined uniquely from reflection data
w(0, f) =f(f). Research on transmission inverse problems has been very active'” "> . However, it is impossible to
reconstruct p(z) and c(z) simultaneously only from reflection data f{ ¢) " or transmission data. In order to recon-
struct multiple media profiles clearly, more information should be added to inverse problems. In this paper, we use
both the reflection data and the transmission data'®”" to recover multiple parameters of the medium.

The aim of this paper is to reconstruct p(z) and c(z) simultaneously. There are some papers on reconstruc-
ting coefficients of the first derivative term in the equation'™*'. Our work is concerned with the recovery of the
coefficient of 32w, which has an influence on the characteristics of hyperbolic equations. By combining the char-
acteristic propagation theory with singularity analysis, we establish an integral system from which both p(z) and
¢(z) can be recovered simultaneously.

1 Establishment of Inverse Problem Model

It is easy to know from Eq. (1) that
’Fw Fw 1 a(ch)aw
o ()5 - =0 (3)
ot 9z p 9z 9z
For this equation in a slab media z e [0, /], we add the following initial-boundary conditions:
w0, ) =w.(L,1) =0, w(z,0) =0, w,(z 0)=52)
to constitute a direct problem. In order to identify the unknowns p(z) and c(z), the following reflection and trans-
mission data are taken as our inversion input data.

w(0,0) =f(1), w(l, 1) =g(1)
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Define
__ L apc) .
B(z):= - —— , w(z, ):=F(2Qu(z, 1) (4)
p(z) oz
with F(z) to be determined. Substituting Eq. (4) into Eq. (3) and letting the coefficient of 9_.u be zero yields
2 2
B(2)F(2) ~2¢*(2) F'(2) =0, a—i‘—c%z)ij?*b(z)wo (5)
where
_1B 1,d/B
b =y 5 o) (6)

If we can determine (c(z), b(z)) in Eq. (5), then p(z) and c(z) can be recovered uniquely from Eq. (4)
and Eq. (6) . Under the transform Eq. (4), we are led to the following inverse problem:

Fu o, du

()5S +b(u=0 0<z<[,t>0 (7)

ot 07

u,—hul . ,=u +Hul. ., =0 t>0 (8)
ul,o=0, u,|,_,=602) 9

u(0,0) =f(1), u(lt) =g t>0 (10)

where h, H are known constants related to p(z), c¢(z) at z=0, [, respectively. We want to recover (c(z), b(z)) for
0<z<!from (f(1), g(1)).

The inverse problem constituted by Eq. (7) to Eq. (10) is treated by the following steps. We firstly consider
the singularity propagation for forward problem Eq. (7) to Eq. (9) in section 2. The correspondent results will be
used in section 3 and section 4. Then we establish a relationship between f{(#) and (c(z), b(z)) in section 3, while
the relation between g(#) and (c(z), b(z)) is obtained in section 4. Finally we simplify our inversion system for
some special cases in section 5, which coincides with some well-known results.

2 Singularity Propagation of Forward Problem

The propagation of a singularity in semi-infinite media z >0 is well-known'"”'. But in Eq. (7) to Eq. (9),

we consider a slab with finite depth 0 < z < [(see Fig. 1). Define g(z) = f ) % . It is easy to know that the char-
0
acteristics of Eq. (7) are described by Ny s,
/OE:t:q(z) 0<z<l

S8, 1=2q() —q(z)  0<z<lI 5

$,8:1=2q(D) +q(z)  0<z<l
and so on. Now we consider u(x, t) in the domain S

D, ={(z,1):0<t<2q(l) +q(2),0<z<!}
Since u, is of impulse singularity along characteristics, u(z, t)
0 1 z

has jump discontinuities between two sides of 631 and :S'_IEZ. The
following approach to the determination of these jump discontinui-
ties is standard'” from the theory of characteristics of hyperbolic
equations.

Fig.1 Singularity propagation

—_—

Lemma 1 The jump discontinuities of u(z, f) between two sides of OS, and S, S, satisty
1=2¢(l) —q(2) + ]t=q(:)+ 1 C(Z)

[u(z, ) ] 1=2q(D) -g(2) - [M(Z’ ) =g - €(0)N c(0)

Proof Let u(x,r) have the following decomposition: u(z,7) =A () H(t - q(z)) +A" () H(t -2q(]) +

q(2)) +U(z, 1), for 0 <t<2q(l) +q(z),0 <z<I. By the smoothness of U(z, t) along its characteristics, we can
determine A , (z) and then complete the proof of lemma 1.

3 Relation between f(¢) and (c¢(z),b(z))

O0<z<l

Since the forward problem Eq. (7) to Eq. (9) is symmetric with respect to ¢, we extend its solution u(z, f)
by defining u(z,¢) = —u(z, —t) for 1< 0 and 0 < z < /. In this case the reflection data f( ) should also be extend-
ed in an odd way. Introduce two domains(see Fig. 2):

D,={(z,0: |t] <2q(l) —q(2),0<z<I}, Dy={(z,0: |t] <q(1),0<z<1I}

According to the singularity analysis in section 2, we define the following Cauchy problem:
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‘;t”—c( )—+b(z)u 0 z>0,reR o

uz—hu\Z:O—O teR s,

uw(0,1) =f(1)  teR |
Then it follows for u(z, t) to satisfy Eq. (7) to Eq. (10) that 0 L -

u(z,t) =u(z,t) (z,1) eD, (11)
u(z, 1) =0 (z,1) eD, (12) &
Introduce the following problem:
G %

’G
Py - Cz(Z)g +b(z2)G =0 z>0,1eR (13) Fig.2 Extension of solution

Gl.,= Lo =hé(1) teR
It is obvious that
G(z, 1) =0 [t >q(2),2>0 (14)
Similarly to the treatment in section 2, let
G(z,t) =a(2)[8(t—q(2)) +8(t+q(2))] +G(z, 1) z>0,teR (15)

where a(z) is a function to be determined such that G(z, #) has only jump discontinuities at characteristics |t] =
q(z) for z>0. Inserting Eq. (15) into the first relation in Eq. (13) and taking the coefficient of 8'(¢ +¢q) —8'(t -
q) as zero yield

2a'(2)q'(2) +a(2)q"(2) =0 z>0 (16)
On the other hand, taking z =0 in Eq. (15) and letting G (0, ) =0 say a(0) =1/2. Hence we get
_1 Je(2)
a(z) = 24/ ¢(0) Osz=l (17)
Now it is easy to verify that u(z, t) can be expressed as
_ q(2) N
u(z0) =a(d) [fir =g(2) +fr+q() | + [ fr=1Gzmdr (18)
oz
for z>0, t e R. Especially, Eq. (18) becomes
q(z
0 =a(a) [t —a(2) +fr +q2) | +[" A1 -nGamar (19)

—4(2)

for(z, 1) € D,;. From lemma 1 and Eq. (12), we know u#(0,0 +) =1/¢(0) . Then we get from Eq. (19) and the
odd extension of f(¢) that (0 +) - f(0-) =2/ c(O) By differentiating Eq. (19) with respect to ¢, we get
q(z) ~
—a()[f (1 =q(2) +f (1 +q()] = WG(Z’ o+ [ [ra-n eraen]ocna oo
for 0 <t < ¢q(z). Since this equation gives the relation between f( #) and G(z, f), now we establish the relation be-
tween G(z, 1) and (c¢(z), b(z)) From Eq. (13) to Eq. (17), we know that G(z, ) satisfies

G __1 ¥G G b(z) [a"( 7) - a(z)b(z)][a(t—q(z)) +8(t+q(2))] =O}

az2 () o c() (2) (21)
Gl.,=0,G |, ,=[h-2da"(0)18(0)

for (z,£) eR™ xR
We first give the following lemma describing the impulse strength of G, on characteristic /OEI

Lemma 2 G(z,t) has the following decomposition: G,(z, ) = E(z)8(t —q(z)) + G.(z,t) along 6?1 where G, is
of jump discontinuities on # =¢g(z) and

E(z) = /C(Z J’ /Z’E(Z)) Cc (Z)a”(g)c(;)b(z)a(z)d + [261 0) —h ] c(0) }

Proof Assume G(z, 1) =E(Z)H(l‘ -q(2)) +G(z, 1), t>0.By .
inserting this decomposition into Eq. (21), we get a boundary prob-
lem with respect to G(z, t). Letting the coefficient of 8(¢ —g(z)) in
the corresponding equation be zero and G, (0, ) not contain the im-
pulse singularity, we get an ordinary equation of the first order with
respect to E(z), which yields the expression for E(z).

Now we consider the integral form of Eq. (21) by integrating a-

—

long characteristics (see Fig. 3). First, draw characteristic line P,P,:
7, -t =q({,) —q(z) through P, (z,t) € D,, which intersects 7, =

. _ L Fig.3 Integration along characteristics on D,
—-q({,) at point P,. For P,({,7) € P,P,, draw another characteristic
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line 53?4:7-1 -7=q({) —q({,).

—

It is easy to know P,P, intersects 7, =¢({,) at point Ps({,, 1)) = (q_l(

T +q(§)) T +4q(0)
2 ’ 2

). Inserting the de-

—

composition in lemma 2 into Eq. (21) and integrating along P, P, demonstrates

BC(Z’T) 1 aC(J,T) ') a@(gl,fl) ~ £ b(Z) _
ag +C(§) or +,f0 Cz(gl) a,Tl @4(1{1 f Cz(gl) G(Z], T]) ‘ P3P4d§| +
J’o[a”(gl) _a(izzg(f)]g( 1 4d{1 =0 (22)

for P, e D,. The first integral term can be computed by lemma 2. Since 9, G(z, t) =0 for t > ¢(z) and 9, G(z, 1)
has only jump discontinuities on ¢ =¢(z), Eq. (22) takes the form

aG(¢, 1) 1 G, 1) _
w0 o + [ Fic0scr - ate)

14
_ A+ F(gem) | _dg =00 (23)
Ps(£1)

P3Py P3Ps
where
a7 +g( a’ a({,)b(¢) _C’(ZI)BG({I’TI)_b(gl)‘;,
Pe) =¢” [T R =S (g)E<§,>+ @) =T, BT = 5T e e, S (24)

Now integrating Eq. (23) again along ﬁl gets( see Fig. 3)
Gla) ~GP) + 5 [ FUG0)e(tad) L + [ rtgerodian, =0

1(J1L

where

L0 =a g +T Q(Z)] G(P,+) =G(q—1(Q(z% —t)’t—g(z) /)

and D(z, t) is the shaded region in Fig. 3. By letting +—¢( z), the above equality becomes
- 1 ¢
Gz.q(2)) +5 [ F(Oe(0)d =0
from Eq. (21), which implies
a(z) b(z)

C(Z) ” — _ iN
o )E(z) +c(z)a"(z) - (0 ZdZG(Z,q(z))

due to Eq. (24). This relation can be reduced to E'(z) = —QG( z,q(z)) from lemma 2, which tells us

dz
b _ a2 n . , d -

(248 2D (Ine(2) 16z 0(2)) = (2a'(0) =he(0)] =2 {5z () (25)
again in terms of lemma 2, where G(z, ¢(z)) means G(z, g(z) —). By combining Eq. (20) and Eq. (25) togeth-
er, we get the relation between reflection data f(#) and (c(z), b(z)).If c(z) =1, then we can determine b(z)
from Eq. (25). In this case, reflection data is enough for recovering b(z). In our case, both ¢(z) and b(z) are un-
known, hence we must use transmission data g(¢) to establish another relation.

. |

4 Relation between g(¢) and (c(z),b(z)) S5

It is easy to know g(t) =0 for 0 <t < g([). Hence we consid- 2 Z
er Eq. (7) on the domain D, = {(z,1):2q(l) —q(z) <t<2q(l) + 52 ~ ’
q(2),0 <z<l}, see Fig. 4. As mentioned above, u(z, t) has jump ' No M
discontinuities between two sides of E]?z. Assume two characteris- Si
tics %: +q'({) through M (z, t) e D, intersect §T§2 and :S’TS3 at
points M, and M,, respectively. The coordinates of these points are bt

Fig.4 Integration along characteristics on D,

My (a7 (0 + 157 g + ) M (e g (o) -

q()) and M,(l,7+q({) —q(l)). Similarly to the treatment in getting Eq. (22), integrating Eq. (7) along M, M,
yields

u(l, 1) +Lau(é,7)

¢
ST g M [ e a0 —a(h) ~He(r +a(0) —q(0) | + [ Far —a@) +a(0)ds, =0

¢ (gl)au({l’T]) _ b({,)
C2(§1) 9, Cz(fl)

where Fy({i.1) = u(Z,.7) (26)



Reconstruction of density and wave velocity from reflection and transmission data 237

—

Integrating the above relation again along M, M, generates

u(zo) —uM) = [ [ pe(rra@) —a(D) = He(r +a(@) —a()) ] _ dr +
! 14
[aputel [ Fei - ac) ra(endg] =0 (27)

where u(M,) is evaluated on the upper-side of §,S,, while the second integral term is in fact the integration of
function F;({, 7) on the domain (see Fig. 4).

0z ={(¢.1:29() ~q(5) <7 <1 = lg(2) - q(2)
The simplification of Eq. (27) results in

, q’l(q(l) +%) <§<l}

u(z, t) —u(M,) +2Ctl) [3(251(2) —q(l)) —g(t +q(2) —q(l))] 4
1 2t
?qu(z)ﬂg(/r -1 +Q(Z) _Q(l))dT +Q(JI)F3(§7 T)dé/d’T =0 (28)

for (z,t) € D,. By substituting Eq. (26) into Eq. (28), we have

u(z) —uM) + 5 [ 8200 —a(D) — st +a() —a(D) | + 5[ gtr =14 q() - q()dr +

q(2) +t

! 4 . b 1
[ S Tugit = lgtg) —ata b — w29 —a@) [ - [ 252z maqdn =0 (29)

a7 Cgny 5 Cz(fl) ol n 02(51)
which establishes the relation between g(¢) and (u(Z,, 7,),b({,), c({,)) on domain D,.

— —

On the other hand, assume that characteristic line ?Tg =¢q'({) through M(L, t) € S,S, intersects S,S, at point

No(q'1 (3q( D - t), q(D) + t). Integrating Eq. (7) along ’M—I\Z) tells us

2 2
L, ou 1 ou
Hg(t) +——=g'(t) +|— - = + F,(Z,t + -q(h)d =0 30
R RAL I ey = M WU C O (30)
by virtue of Eq. (8) and Eq. (10), where [ -], also is evaluated on the upper-side of EI_EZ.
Let ¢ (%) =z in Eq. (30) for ¢(I) <t <3¢(l), then the coordinate of N, is N,(z,2¢(l) —g(z)) and
it holds that
| d
o) (3q(D) —2q(2)) +Hg(3q(l) —29(2)) +dfzu(z,2qu) -q(2) +) +
1
[ Fie2a(h —q() +q@dr =0 0 <z <l (31)
- 4 _[ou ou( _ 1
since dzu(z’zq(l)_q(Z) +) = [8{+ar( C({))]NO
Eq. (29) and Eq. (31) contain u( M) evaluating on the upper-side of gl—S\z. For any point P(z,2q(1l) —q(z2))

—

e §,S,, according to lemma 1 we get

u(z,2q(l) —q(z) +) =u(z,29(l) —g(z) -) +

Furthermore, it can be replaced by

q(2) N
u(2.2q(D) = a(2)+) = G al Sy + a2 ~2(2) +A2a0)] + [ f2q() ~a() =D G(z.mdr (32)

from Eq. (11) and Eq. (18) for 0 <z <L

By combining Eq. (20), Eq. (25), Eq. (29), Eq. (31) and Eq. (32) together, we get a set of equations.
These equations contain the following unknown functions (a(z) can be expressed by c(z)): D (c(z), b(z)) for
0<z<l; G(z, 1) for |t] <q(z), 0<z<l;® u(z, t)for (z,1) e D,;; @ u(z,2q(l) —q(z) +) for 0 <z <I. Here
Eq. (20), Eq. (25), Eq. (29), Eq. (31) and Eq. (32) constitute a closed system from which c¢(z) and b(z) can be
reconstructed simultaneously by numerical implementation.

1 e
(0N (0) 0<z<l

5 Discussions

This paper is concerned with the inverse problem of reconstructing p(z) and c(z) simultaneously. Both re-
flection and transmission data are required for our inversion approach. However, if one of these two parameters is



238 Su Jingxun, and Liu Jijun

prescribed in advance, our inversion can be greatly simplified and coincides with some known inversion methods.
In the case of only one unknown parameter, either reflection data or transmission data is enough to determine p( z)
or c(z) uniquely. Starting from inverse problem Eq. (7) to Eq. (10) directly, we give two examples.

Case 1 c¢(z) is prescribed and we take reflection data f( ¢) as inversion input. This inversion problem, deter-
mining b(z) from f(t), has been discussed thoroughly. Since c(z) is known, we can convert wave velocity to 1
for travel-time variable x. Therefore, without loss of generality, we assume c(z) =1 directly. Eq. (7) to Eq. (10)
lead to

o'u 8

— -5 +b(u=0 O0<z<l,t>0 (33)

at 07

u,—hul _o=u +Hul _, =0 t>0 (34)
ul,o=0, ul,.,=80c2) (35)

u(0,1 =f(1 t>0 (36)
In this case, Eq. (20) and Eq. (25) in section 3 can be simplified as

%[f(t—z) +7(t+2)] +2G(z, 0 +fz[f(t—r) +f(t +7)1G(z,7)dr =0

b(z) =4 dié(z, 2)
Z

For known reflection data f( 7), we can solve G(z, f) for 0 <t <z <[ from the first equation. Then b(z) can be de-
termined. The boundary condition at z =/, however, has always no influence on b(z). This fact corresponds to the
following well-known conclusion: reflection data f(¢) for 0 <¢ <2/ is enough to determine b(z) for 0 <z <.

Case 2 c¢(z) is known, the inversion input is transmission data g(f). We also assume c¢(z) =1. In this case,
Eq. (36) is replaced by

u(l,t) =g(1) [<t<3l (37)

we want to recover b(z) in terms of Eq. (33) to Eq. (35) and Eq. (37). A similar problem is considered in Ref.
[3]. From Ref. [3], we know b(z) can be recovered from transmission data g(f).
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