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Homological properties of modules characterized by matrices

Zhang Xiaoxiang Chen Jianlong

(Department of Mathematics, Southeast University, Nanjing 210096, China)

Abstract: Some homological properties of R-modules were investigated by matrices over a ring R. Given two
cardinal numbers o, 8 and an « x 3 row-finite matrix A, it was proved that Ext (R /R A, M) =0 if and only
if M, /1, (R*”A) = Hom,(R"” A, M) if and only if 1,1, (A) =AM, Thus, the notion of (m, n)-injectivity was
extended. Moreover, ( «, 8 )-flatness was characterized via annihilators of matrices, factorizations of
homomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules and n-
projective modules were consolidated under the notion of («, 8)-flat modules. Furthermore, a characterization of
left R-ML modules and some equivalent conditions for R A to be left R-ML were presented. Consequently, the
notions of coherent rings, (m, n)-coherent rings and 7r-coherent rings were consolidated under that of («, 8)-
coherent rings.
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(m, n) -injective modules were discussed by Chen et al. in Ref. [1]. Given m and n € N (the set of natural
numbers), a right R-module M is called (m, n) -injective if every right R-homomorphism from an n-generated subm-
odule of R" to M extends to one from R" to M. This definition unifies several definitions on generalizations of injec-
tivity of modules, such as f-injective modules, P-injective modules and FP-injective modules. Many characterizations
of (m, n)-injective modules were given and the notions of (m, n)-flat modules as well as (m, n)-coherent rings
were introduced in Ref. [2].

Finite projectivity of modules was originally investigated by Simon""' under the terminology of  _, -projectivi-
ty and was studied in Refs. [4, 5]. The concept of locally projective modules was introduced by Gruson and
Raynaud'®' .

It is well known that

. FP-injective = (m, n) -injective ( Y m, n e N) =P-injective = (1, 1) -injective
mjective=q .. . = . N T e
{f—m]ectlve =(1, n)-injective ( V¥ n e N) =P-injective = (1, 1) -injective
and
projective = locally projective = finitely projective = flat = (m, n)-flat ( V¥ m, n e N)
But none of the above implications is invertible in general.

The purpose of the present discussion is to supersede m and n € N by two (possibly infinite) cardinal numbers
« and B when investigating some homological properties of modules so that some known results can be extended.

Throughout R is an associative ring with identity and all modules are unitary. « and B are two fixed cardinal
numbers (unless specified otherwise) . We write M (M) to indicate a right (left) R-module and M, (M) to in-
dicate the direct sum of « copies of M, (M), while the direct product of a copies of My(M) is denoted as
M, (M*). Elements in M, (M) are regarded as column (row) vectors and elements in M (M) are regarded simi-
larly. Thus, matrix product may freely be adopted. For example, given a € R, B x a row-finite matrix A over R,
and x e M,, we may define aA € R and Ax € M, as usual. Hence R A may stand for the set {aA e R |ae
R¥}. For a left R-module M, r,, (R¥ A) denotes the right annihilator of R¥’A in M, Similarly, 1, (A) is the left
annihilator of A in R

Theorem 1 Let o and B be two cardinal numbers and A a 8 x « row-finite matrix over R. The following are
equivalent for a left R-module M:
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(D Every left R-homomorphism from R” AC R'® to M extends to one from R to M,

@ Ext,(R““/R¥PA, M) =0;

3 Every short exact sequence 0 —,M — L — R /R"® A— 0 splits;

@) If the sequence 0 —,K — L — R'“/R"”A—0 is exact then any R-homomorphism f: ,K— .M extends to
#Ls

®) ¢: Hom, (R /R® A, E)— Hom,(R'“ /R A, E/M) derived from the canonical map 7r: E—~E/M is an epi-
morphism, where E is the injective envelope of M;

© o Ma/rMa(R(ﬁ)A)H Hom,(R®A, M) derived from the canonical isomorphism M, =Hom, (R, M) is an
isomorphism;

(D) For any fe Hom,(R¥ A, M), if (g, h) is the pushout of (f,) in the following diagram (where i is the in-
clusion map)

R® A LA R
vf Vh
M 4 L
there exists a homomorphism ¢: L—M such that ¢ o g =1,,;

rMBIR<B)(A) =AM,

Proof Do @ o @2 o ® and @ < @ are trivial.

@ & @. Note that Hom,(R?A, M) = {xeM, | 135 (A) Clyp (1)} =1, 1p (A) and Hom, (R, M) = M,
as abelian groups.

@ < ©.Let I=R®PAC R =F. Then the result follows by the following commutative diagram with exact
TOws

0—>ry (1) — M, — MJ/ry (1) >0
= = o\
0 — Homg(F/I,M)—> Homg(F,M) — Homg (I, M) —Exty (F/I,M)— 0

Definition 1 Let « and 8 be two cardinal numbers. A left R-module M is called («, 8) -injective if it satisfies
the equivalent conditions in theorem 1 for every 8 x a row-finite matrix A over R.

Remark 1 (D It is easy to see that («, 8)-injectivity coincides with (m, n) -injectivity'" in the case a =m and
B =n e N. Thus some known results on (m, n)-injective (respectively, P-injective, n-injective, f-injective and FP-in-
jective) modules in Refs. [1,2] can be obtained as corollaries of theorem 1.

(2 From Baer’s criterion of injectivity one can see that a left R-module is injective if and only if it satisfies the
equivalent conditions in theorem 1 for every |R| x 1 matrix A over R.

Proposition Let A be a 8 x e row-finite matrix over R, i: R®” A — R'® the inclusion map and 77: M — M/K
with K< M. Suppose that Hom, (i, M) is an epimorphism, i. e. ,rMBIRw)(A) CAM,. Then the following are equiv-
alent:

D Hom, (i, K) is an epimorphism, i. e., r,(ﬁlR(,g,(A) C AK ;

@ Hom,(R'“/R¥A, 7) is an epimorphism;

@ {xeM, |RP?AxCK} =K, +r,, (RPA).

Proof () <) is straightforward.

@O =®. {xeM, | R® AxCK} 2K, +r, (R”A) always holds. Suppose (D holds. Then, for any x e M, with
R¥®AxCK, it is easy to see that Ax e rKBIR(B)(A) and hence Ax =Ay for some ye K,. Thus x =y +(x-y) e K, +
r, (RPA).

@ =Q@. For any x e rKBIR(ﬁ)(A), we have x e rMBlR(B) (A) and hence x =Ay for some y e M. It follows that
RPAyCK.Thus y =y, +y, with y, e K, and y, er,, (R® A). Therefore x =Ay =Ay, +Ay, =Ay, eAK,.

Remark 2 One can deduce some equivalent conditions, under which a submodule of an («, 8)-injective (re-
spectively, P-injective, n-injective, f-injective and FP-injective) module is («, B)-injective (respectively, P-injec-
tive, n-injective, f-injective and FP-injective) from the above proposition.

Now let N be a right R-module and A a 8 x o matrix over R. Suppose the i-th row of A is @, =(a;) and ¢, €
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R with 1 in the i-th position and O elsewhere. Define f: R” R A such that f(e,) =a,(for all i), then f is an epi-
morphism of left R-modules with Ker =14 (A). Let 7: 1y (A)— R'® be the inclusion map. We have an exact se-
quence

N®T N®f
N ®lyp(A)—>N @ RP——N @ RPA —0
Consequently, for each x = (x,) e N¥ with ) (x, ® a;) =0in NOR¥ A, it follows that )" (x, ®e,) e Ker(N ®

f) =Im(N @ 7) . Thus we have the following lemma.
Lemma For each x = (x,) e N¥ with ) (x, ® a;) =0in NQR®A, there is a positive integer k, y € N and

k x B row-finite matrix C over R such that CA =0 and x = yC.

For each xe N,ac R¥® and b ¢ R, by usual multiplication of matrices, we have xaA e N* and xaAb e N.
Then, by the above lemma, there is a canonical map u: NQR*” A—N* defined via u(x®aA) =xaA for each x e N
and a e R . Simultaneously, there is a canonical map »: NQR”’ A —Hom,(AR,,,, N) such that [v (x®aA)](Ab)
=xaAb for all xe N,ae R* and b eR,, . It is easy to see that »(x®aA) =0 if and only if xad =0.

Theorem 2 Given two cardinal numbers « and B3, a 8 x « matrix A over R and a right R-module N,. Let S =
{fe Hom(R,/AR ), N;) | Jx € N* such that f(a + AR,,)) =xa for all a € R;}. The following statements are
equivalent:

(D The canonical map u: NQR® A—N" is a monomorphism;

(2) The canonical map »: NQR” A —Homg(AR ,,N) is a monomorphism;

3 For each x 1y, (A), there is a positive integer k, y € N* and k x 8 row-finite matrix C over R such that CA
=0 and x =yC;

@) For each fe S, there is a finitely generated free (or projective) right R-module F such that f=f, o f, for
some f; € Homy(R;/AR,,,, Fy) and f, e Hom,(Fy, Ny);

() For each fe S, if ¢: L;—N, is an epimorphism, there exists g e Hom,(R,/AR,,, Lg) such that Img is con-
tained in a finitely generated submodule of L and f=¢ - g.

In the case that A is row-finite, the above conditions are equivalent to

© Ext,(R“/R¥PA,N*) =0, where N* =Hom,(N, Q/Z);

(@ Tory(N,R“/RP A) =0.

Proof (1) <2<@) follows by the preceding lemma. @)<(3) is easy.

@) &@. Note that S=1,, (A) as abelian groups.

If A is row-finite, R” ACR' and Im u CN“. Then D=6 and D) are clear.

Suppose that 8 =n is a positive integer and « is a cardinal number. Given an n x a row-finite matrix A over R
and a right R-module N, we define ¢: N®l.(A) —Hom,(R,/AR ,,N) such that [¢ (x&®a)](b +AR,, ) =xab for
all xe N,aeR" and b e R,. Then we have the following commutative diagram with exact rows:

Nl (A) —>N®QR' —NRRA—>0
Yo Ve Vv
0—>Homg (R,/AR(,y, N) = Homg (R, , N)—> Homg (AR, ,N)
where 1,(A) = Hom,(R,/AR , ,R). Note that v is a monomorphism if and only if ¢ is an epimorphism. So the
equivalence of (1) and (2) in theorem 2 yields the following corollary.

Corollary 1 Given a positive integer n, a cardinal number «, an n X o row-finite matrix A over R. Let P =
R,/AR, and P* =Hom,(P, R;). The following statements are equivalent for a right R-module N,:

(D The canonical map u: NQR"A—N" is a monomorphism;

(@ The canonical map ¢: N®lI,(A)— Hom,(R,/AR ,, N) is an epimorphism;

(3 The canonical map o: N®QP* —Hom,(P, N,) such that [o(x®g)](z) =xg(z) (VxeN,geP" and ze P)
is an epimorphism.

Definition 2 Let « and 8 be two cardinal numbers. A right R-module N is called («, 8)-flat if it satisfies the
equivalent conditions (1) to () in theorem 2 for every 8 x a matrix A over R.

Remark 3 (D It is easy to see that («, 8)-flatness coincides with (m, n) -flatness'' in the case o =m and B=
neN.
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(2 For a positive integer n, it is easy to see that a right R-module N is n-projective'” if and only if it satisfies
the equivalent conditions in theorem 2 and corollary 1 for all cardinal numbers « and every n X o matrix A over R.
Furthermore, N is f-projective if and only if it is n-projective for all positive integers 7.

3 As an immediate consequence of theorem 2 and corollary 1, we can obtain corresponding characterizations
of, respectively, (m, n)-flat modules, flat modules, n-projective modules and f-projective modules.

Recall that a right R-module M is said to be R-Mittag Leffler (R-ML) in the case the canonical map u,, ;: MQ
R'— M' defined via u,, ,(x®{r,}) = {xr,} is a monomorphism for every set I'"'. Left R-ML modules can be defined
similarly. It is well-known that M is R-ML if and only if, for every finitely generated submodule N of M, the inclu-
sion map factors through a finitely presented module. Moreover, M is finitely presented if and only if M is finitely
generated and R-ML. M is f-projective if and only if M is flat and R-ML.

Theorem 3 Let M be a right R-module and 7: F— M, an epimorphism with Kers = K, where F is free.
Then the following are equivalent:

D M is R-ML;

@) For any n e N and any x e M", there exists y e M", m x k matrix A and m x n matrix B over R for some m,
k e N such that x =yB, yA =0 and Br;.(x) CAR,.

Proof (D=2). For any x e M", xR, is a finitely generated submodule of M. Suppose the inclusion map i: xR,
—M factors through R, /AR,, where A is an m x k matrix A over R, m, k e N. Say i =4 o ¢ with ¢ € Homy(xR,, R,/
AR,) and y € Homg(R
=17, o f for some homomorphism f: R,—R,,. Note that f(a) =Ba for some m x n matrix B over R and for all a e

AR, M).Let 77,: R,—xR, and 7,: R,,—R, /AR, be the natural epimorphisms. Then ¢ ° r,
R,. In addition, (¢ o 77,) (b) =yb for some y e M" and for all b e R,,. It is easy to see that y, A and B are as desired.

@ =. Let xR, be a finitely generated submodule of M with x e M". Then the inclusion map i: xR,—M fac-
tors through R, /AR, .

Theorem 4 Given two cardinal numbers « and 8 and a 8 x « matrix A over R. The following statements are
equivalent:

@D RPA is a left R-ML module;

) For any cardinal number 1y, the canonical map Mg, R,® RP A (R,)® is a monomorphism;

@ For any free right R-module F and any cardinal number vy, the canonical map M ; F.® RPA> (F L) Yis a
monomorphism;

(@) The canonical map u,,: ([ [ M,) ®; R®A— (][] M, is a monomorphism whenever {M,},_, is a set of
right R-modules such that, for each M,, the canonical map u,: M, ® ;R” A—(M,)* is a monomorphism.

Proof De=Q), 3=2) and @=(2) are clear.

@=@®. Let F =R, where [ is a set. Note that F is a pure submodule of R, by Ref. [4].

3)=@. For each i e 1, there is a natural epimorphism 7,: F,—M, with Kers, = K,(where F, is a free right R-
module) . Then we have the following commutative diagram with exact rows:

(1T m)or?a—~(I[F.)orR? A ~(IIM)® R? 4—0
v v W‘HML.
o~ (1Im) — (IIF)° — (I[m)—~o0
It is trivial to verify that w is a monomorphism.

m

Recall that R is said to be left (m, n)-coherent'” in the case that every n generated submodule of ,R" is finite-

ly presented. R is said to be left coherent'®

in the case that every finitely generated left ideal R is finitely presented.
R is called a left 7-coherent'” ring if every finitely generated torsionless left R-module is finitely presented. Note
that R”? A is a B generated (torsionless) submodule of R* in theorem 4 and, in the case that 3 is finite, R’ A is R-
ML if and only if it is finitely presented. Naturally, we call R an (a, ) -coherent ring if R’ A is a left R-ML mod-
ule for each B x a matrix A over R. Thus (a, 8) -coherence coincides with (m, n)-coherence in the case « =m and 8
=n e N. Moreover, R is left coherent (77-coherent) if and only if it is left («, ) -coherent for all e =m and B=n e
N (for all B8N and all cardinal number «).
We complete this paper with the following corollary, which is an immediate consequence of theorem 4.

[2,8,9]

Corollary 2 The following are equivalent for a ring R:
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(D R is left (m, n)-coherent (respectively, coherent, 77-coherent) ;
(@ Every direct product of R is (m, n)-flat (respectively, flat, f-projective) as a right R-module;
@) The class of (m, n)-flat (respectively, flat, f-projective) right R-modules is closed under direct product.
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