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Optimal shape space and searching in the active shape model
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Abstract: A novel idea, called the optimal shape subspace (OSS) is first proposed for optimizing active shape

model (ASM) search. It is constructed from the principal shape subspace and the principal shape variance

subspace. It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape

space, hence it is more expressive in representing shapes in real life. Then a cost function is developed, based on

a study on the search process. An optimal searching method using the feedback information provided by the

evaluation cost is proposed to improve the performance of ASM alignment. Experimental results show that the

proposed OSS can offer the maximum shape variation with reserving the principal information and a unique

local optimal shape is acquired after optimal searching. The combination of OSS and optimal searching can

improve the ASM performance greatly.
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Accurate alignment of faces is very important for
extraction of good facial features for success of appli-
cations such as face recognition, expression analysis
and face animation. The active shape model (ASM)""
proposed by Cootes et al. is one successful shape model
for object localization. In it, the local appearance mod-
el, which represents the local statistics around each
landmark, efficiently finds the best candidate point for
each landmark in searching the image. The solution
space is constrained by the properly trained global
shape model. Based on the accurate modeling of the lo-
cal features, ASM obtains good results in shape locali-
zation.

Usually, the dimensionality of the principal shape
model is chosen to explain as high as 95% to 98% of
variation in the tangent shape space (TSS) so that the
ASM model can approximate any shape in TSS accu-
rately. The underlying assumption is that if the recon-
struction error is small, the overall error of the ASM
search will also be small. This underlying assumption
was taken for granted by previous works without any
justification. However, our analysis of optimal shape
subspace and optimal search processing for ASM shows
that this is inadequate.

In standard ASM search, each point is first
searched in image shape subspace (ISS) according to
the profiles perpendicular to the object contour around
it. Then shape mode constraint is performed to adjust
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the search result. These two steps are done alternately
and independently. If no evaluation is made to the
search result and no direction constraint is given to the
search process, the search will never stop and the result
will be very sensitive to the patch noise. Several evalu-
ation methods are proposed'' ™", in particular that by
Huang et al. "*'can be used in a new image search, but
it needs to build in the model of active appearance
model (AAM). As for shape model constraints, no dis-
cussion about it appears in previous works.

In this paper, the optimal shape subspace (OSS)
is proposed after analyzing the properties of ASM
search subspace. The idea is as follows: To minimize
the error between the search result and the input, we
should construct a search subspace which not only con-
strains the search in the principal shape space, but also
allows the shape to vary as much as possible. The OSS
allows good variations of shape information with mini-
mal dimension. On the other hand, a simple evaluation
method based on the point searching cost value in ISS
is presented to measure the quality of the ASM search,
to produce reliable search results. We also propose a
method to constrain the search action according to the
shape adjust in OSS. Finally, combining the evaluation
and the constraints, we get an optimal searching meth-
od with the information from both ISS and OSS.

1 Optimal Shape Subspace in ASM

1.1 Traditional ASM modeling

To train the ASM model, shapes in ISS should
first be annotated in the image domain, then these
shapes in ISS are aligned into those in TSS. When a
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training set of the tangent shapes in TSS is given, the
basis functions for the KLT are obtained by solving the
eigenvalue problem A = @' 3P, where 3 is the covari-
ance matrix, @ is the eigenvector matrix of 3, and A is
the corresponding diagonal matrix of eigenvalues. After
being trained by principal component analysis (PCA),
the ASM model can be written as x =X + @b, where x
is the mean tangent shape vector, @, = {¢, | ¢, | ... |
¢,} 1s a submatrix of @ containing the principal eigen-
vectors corresponding to the largest eigenvalues ( sorted
so that A;=A,,,), and b is a vector of shape parame-
ters. For a given shape, its shape parameter is given by
b= @D,T(x —X). The number of eigenvectors(?) to retain
can be chosen in several ways described detailed in
Ref. [5]. But they are all based on the reconstruction
error which Zhao et al. '*! thought is not enough. They
proposed a P-TSS shape subspace and got some better
results.

1.2 Optimal shape subspace

We can see from above that the TSS in standard
ASM and Zhao et al. ’s' is constructed by only con-
sidering the principal shapes and discarding all the oth-
er components. This is to some extent inadequate since
every model to be described has much variance and we
cannot express them all in a given model space. Thus,
we should consider the shape variance as well as the
shape itself. As an optimal TSS, we think that it should
have such properties. First, it can allow the shape it re-
constructs to vary as much as possible. When recon-
structing a shape in it, we should have the minimal re-
construction error. Secondly, its dimensions should be
as few as possible. Not only can it reduce the computa-
tion, but also the constraint when reconstruction is mi-
nor. Thirdly, which is the most important, the total
changes between the search result and its reconstruction
must be as small as possible, since we believe, to some
degree, that the points after the search are the best can-
didates in that iteration. The aim of reconstruction is to
adjust the points which deviate too much, but not to re-
construct a new shape. We call the shape subspace
which satisfies such three properties the optimal shape
subspace.

For the first one, the larger ¢ is, the more shapes
this subspace can reconstruct. While for the second, the
fewer the better. Considering the first and the second
together, we decompose OSS into two parts: the princi-
pal shape subspace (PSSS) which controls the shape in
searching and the principal variance shape subspace
(PVSS) which controls the shape variance in search-
ing. They are both the subspace of @ with orthogonali-
ty: OSS =PSSS@PVSS.

When constructing, the PSSS shares the same
meaning of TSS and can be constructed like @, in
standard ASM. In this paper, we adopt the rule of Zhao
et al. ™, that is, about 72% proportion of the variance
exhibited in the training data is selected. But for
PVSS, the construction suffers some difficulties. We
should find one parameter to stand for the shape vari-
ance for every eigenvector. Suppose that every element
of a given eigenvector is the same and its projection
coefficient changes, the whole shape will only trans-
form in shift, but will not change in itself ( see the last
row in Fig. 1). That is, only the variance of an eigen-
vector itself controls the shape transformation. Thus, to
select the eigenvectors with the largest variance to con-
struct PVSS is somewhat reasonable.
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Fig.1 Relationship between the eigenvector’s variance and
its deformability

In total, the proposed algorithm to construct the
OSS is as follows:

(D Select the eigenvectors with 72% proportion of
the variance in the training data.

(@ Get the correlation matrix of the left eigenvec-
tors.

) Get the variance for the left eigenvectors.

@ Select the largest variance eigenvectors with
the least correlation coefficient. The number can be
chosen in many ways, one can set the threshold of the
total number or the value of the variance. In this paper,
we select the number semi-automatically, that is, we
manually select the principal deformations in all the
eigenvector candidates after printing.

There are two main improvements in constructing
OSS. First, the major shape and shape variance are con-
sidered. So not only can it reconstruct the shape similar
to the training with the least reconstruction error, but it
can also approximate the shape which has as much
difference from the training as much as possible. Sec-
ondly, the basis to control shape variance is selected af-
ter removing correlation, which would make the space
more compressive.

2 Optimal Search Processing in ASM

After the OSS is constructed, the next task is
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searching. Usually, searching is performed in ISS and
TSS alternately. No evaluation is given to the tempora-
ry search result and no discussion is made about the re-
lation between the ISS and TSS when searching. The
underlying assumption is that the result after iteration
in ISS and TSS is completely right. Obviously this is
not always right. Thus, we cannot get a stable result. It
can be oscillatory when most of the points are in the
right place in searching or the reverse. If we can evalu-
ate the search result right away, we will know the re-
sulting situation and decide whether it is right, so that
we can select the best candidates to make further itera-
tion. Point-to-point error is used by most researchers to
evaluate the searching result shape'"**
be used because we do not know the true position
when searching. In Ref. [3], a novel ASM + AAM
evaluation method is proposed after training with the
Adaboost classifier, but it is somewhat complicated. So
what can be used reasonably and easily?

Let us return to the search process. We know that
there are two parts in ASM, one is OSS to adjust the
shape after searching, the other is ISS in which every
point is searched. So after iteration, we have two kinds
of parameters: (,, ay, ..., ay)in OSS and (B, B,, ..,
By) In ISS. N and M are the dimension of OSS and the
point number of the model. B, is the projection error in
ISS of the i-th point. Its value shows the possibility that
the point i is the right i-th point. If it is large, the possi-
bility will be small and maybe the search result will be
wrong. Homoplastically, for the whole model, if the to-

1 But it cannot

tal error Z B: is small, it dedicates more points with a
large possibility that they are in the right place. The ex-
perimental results (see Fig.2) show that around the
right shape, the larger the total error, the further from
the right shape the searching shape is. In other words, it
means that this total error value can evaluate the search
result. So, in this paper, Z B is used as the cost value

to evaluate the search result.
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Fig.2 Model cost value in X and Y shift

«; is the projection coefficient in the OSS. Its val-
ue denotes the shape transformation along the i-th ba-

sis. In PSSS, every basis is for main shapes. That the
projection coefficient is larger or smaller than the
threshold indicates that the search result did not like
the shape any more. That is, most of the points are in
the wrong places. Maybe the initial scale is too large or
too small and maybe the shift of X or Y is too much.
The later shifting can be omitted because of the detec-
tion before. So the initial scale is the key point. Now
we can conclude that if the o; in PSSS is out of range,
we can believe to some extent that the reason is be-
cause of the initial shape scale. This is very useful in
forecasting the search direction in the next iteration. In
PVSS, if «, is out of range, the searching result will
transform too much in the i-th rotation direction. This
can be brought out by wrong searching completely or
by some points searching correctly and others incor-
rectly. Just like in PSSS, the possibility of the whole
shape incorrectly searching is small. So it is mainly be-
cause of unbalanced searching. A logical reason for this
unbalance is that some points are near the right place,
and some are far from the right place, which can appear
when the initial shape intersects with the right. This is
the second conclusion.

After iteration, we get the out of range coefficients
Qi Qs ey Oy s Qops Oy -+, O, and the total cost val-

M
ue C = ) S, .Let n, be the number in PSSS and n, be
i=1

the number in PVSS. Then we can forecast the distor-
tion between the right shape and the search result in
scale and shift in this way:
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where threshold 7, and coefficient § are constant val-
ues. But the former threshold 7, should be selected very
carefully, since it not only contains the value informa-
tion, but also contains the scale or shift direction infor-
mation. The final initial shape position for the next iter-
ation we used is

— a ay; - Gy

Xuw = Xas(1+T] f)m n;y o

The initiate shape before searching is more similar

to the right shape after preprocessing in such a way.
Considering the performance robustness, we search the
shape around X, ., ( =5 pixels in X and Y direction)
through a few steps circulation in scale and shift and
choose the one with the least cost value C as X', .

In total, the method for the optimal searching is as
follows:
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(D Initiate the shape with the detection algo-
rithm™ for the first time;

M
@ Caleulate Cyy = Y Boass
i=1

(3 Search as for the traditional ASM;
@ Get the parameters of o, s -.or @y, 5 Qs

M
Qs -oes y,» and the total cost value Cyp = Y Booy i
i=1

(& Compute X, from Eq. (3) and get the best
X', after searching;

® Repeat 3) to &), until | C,,, -C,,| <T.

This algorithm has three major improvements over
traditional ASM searching methods. First, the ISS and
OSS are considered at the same time when searching.
They restrict each other with a strong relation, whereas
in the traditional method, they are used separately. Sec-
ondly, it provides a new evaluation method for the
search shape and a preprocessing set for the new shape
being searched, so we can make a more controllable
search. Thirdly, the final result is determinate, not oscil-
latory any more. This is very important because we do
not know exactly how many searches are enough for a
new image in the traditional method, but now, there is
no such question.

3 Experiments and Results

The database used consists of 1 406 face images
from the FERET'® | the AR' databases and other col-
lections. 87 landmarks are labeled on each face. We
randomly selected 703 images as the training images
and the others as the testing images. Multi-resolution
search is used, using four levels with resolution of 1/8,
1/4,1/2,1 of the original image in each dimension. At
most 10 iterations are run at each level. The ASM uses
profile models of 11 pixels long (five points on either
side) and searches two pixels either side.

3.1 Optimal shape subspace

On each testing image, we make two kinds of tests
with different ways to initialize the start mean shape. In
the first method, we initialize it after face detection. In
the second, we initialize the starting mean shape with
displacements from the true position by =+10 pixels in
both X and Y. Point location accuracy is used to give
the evaluation for every search subspace in two catego-
ries. The comparison results are shown in Fig. 3. The X
coordinate is point-to-point error and the Y coordinate
is the percentage of the samples whose point-to-point
errors are less than the given point-to-point errors val-
ue. We can see that in the first situation, the search er-
ror is mainly around five pixels for OSS, much better
than the other two methods with nearly the same error

of about 20 pixels. In the second experiment, although
the difference among three methods is very small,
searching with OSS is still the best.
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Fig.3 Comparison of different searching subspaces with
different initiating mean shapes

3.2 Optimal searching

In this experiment, optimal searching, the tradi-
tional ASM searching and Zhao et al. ’s searching are
compared using the initialization of a face detection
method'”. Like the experiment in testing OSS, point
location accuracy is also computed to evaluate their
performance. The result is shown in Fig. 4. It can be
seen that optimal searching has about 50 percent sam-
ples whose point-to-point etror is less than 5 pixels, ob-
viously better than the other two. Both optimal search-
ing and Zhao et al. ’s method are better than the tradi-
tional searching algorithm.

Lastly, the performance of OSS + optimal search-
ing, which we call optimal ASM, is tested in the same
way. The results are shown in Fig. 5. From the figure
we can see that by joining OSS with optimal search-
ing, the result is overwhelmingly better.
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4 Conclusion

In this paper, we have discussed optimal shape
subspace in ASM training and optimal searching in
ASM searching. With the best experimental results, it
can be concluded that containing the basement shapes
and the basement shapes’ variance at the same time in
the shape subspace is very important. Because the
shape to be searched varies very much, the subspace to
describe them should give enough shape information.
We call this kind of shape subspace the optimal shape
subspace. Because of using evaluation and constraints
in the search process in the proposed method, which
has never been done in all the work before, not only a
more reliable and accurate result but also a controllable
search process are acquired, which is why we call this
optimal searching. All kinds of experimental results
show that a search with OSS and/or optimal searching
has much more efficiency and accuracy.
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