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Abstract: A novel data streams partitioning method is proposed to resolve problems of range-aggregation

continuous queries over parallel streams for power industry. The first step of this method is to parallel sample

the data, which is implemented as an extended reservoir-sampling algorithm. A skip factor based on the change

ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively. The

second step of this method is to partition the fluxes of data streams averagely, which is implemented with two

alternative equal-depth histogram generating algorithms that fit the different cases: one for incremental

maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.

The experimental results on actual data prove that the method is efficient, practical and suitable for time-varying

data streams processing.
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The integration of parallel and approximate tech-
niques is the inevitable developmental trend for data
streams processing in the future. Continuous query
(CQ) systems over data streams challenge the tradi-
tional data parallelism techniques because of the expi-
ration of the data and the delay of the communication.
They require adaptive, online repartitioning, and load
balancing of lookup-based operators'"'. In many tradi-
tional parallel systems, the partition controller relies on
histograms on selected columns to estimate partition
range. Generating histograms and other statistical meas-
ures over large data sets are expensive propositions.
Therefore, random sampling of data has been consid-
ered as a technique to efficiently construct approximate
histograms.

In a parallel database domain, there are two funda-
mental approaches—exact splitting and approximate
splitting to determine the data partition vector'™ . It is
difficult to determine the quantiles exactly over infinite
data streams, so we have to apply an approximate tech-
nique. The course of generating approximate quantiles
can be regarded as the course of generating approxi-
mate equi-depth histograms. It is an expensive problem
to look for buckets whose frequency variance is a mini-

(3]

mum'”'. There are many existing sampling algo-
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rithms'* . Reservoir sampling algorithm is adapted to
sampling for the unknown sized files. Ref.[5] allowed
skipping of a number of records when scanning original
data sets. For on-the-fly data streams, the reservoir
sampling algorithm is ideal sampling method. But this
simple random sampling method does not adapt to the
time-varying data streams. Each sample should not be
selected with equal probability. Ref. [6] addressed this
critical question of determining “how much sampling is
enough” in the context of an equi-height histogram.
However, its background work is statically large data
sets. Moreover its equi-height histogram is applied to
estimate the selectivity of range query. Our objective is
to construct an efficient method of sampling and gener-
ating histograms adapted to data streams.

1 Continuous Query Model and Definition

In the power industry, the value of load data
streams generally obeys a certain approximate distribu-
tion. The partition vector produced from samples of da-
ta streams can portray the overall characteristic distri-
bution of data streams. We can compute an approxi-
mate partition vector by sampling the data streams in a
given time interval. Considering the expiration of data
streams, the method based on range partition is more
suitable for aggregate operation related content, which
can effectively avoid the data skew for data repartition.
Our strategy is to sample over data streams; apply an
equi-depth histogram technique to generate an approxi-
mate partition vector over sample tuples; use the fixed
size tuples in every bucket as partition granularity; and
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apply the method of round robin range partition to re-
distribute tuples received locally to the other appropria-
tor sites.
1.1 Parallel CQ processing model adapted to pow-

er load streams

According to the peculiarity of the power distribu-
tion network, our coordinator-worker model is parallel
and distributed. Its architecture is composed of the co-
ordinator and the worker with the query preprocess lay-
er. Each site (including the worker and the coordina-
tor) possesses its own local computational resources,
and communicates via messages with each other. Com-
pared with the existing SCADA system whose front-
end is only responsible for acquiring data rather than
processing complex tasks, this work-coordinator model
distributes a lot of tasks to multiple intelligent front-
end (worker) and intensively reduces the workload of
the central server, so it can get better performance. For
the details of the model, refer to Ref. [7]. The course
of its data partitioning can be divided into three pha-
ses. The first and second phase of data partitioning are
illustrated in Fig. 1 and Fig. 2. First, the coordinator
generates a new partition vector using samples derived
from each worker, and sends the partition vector to all
workers. Secondly, the data streams streaming in a
worker will be directly redistributed to the other work-
ers according to the partition vector gained from the
former phase. For example, at worker 1 in Fig. 2, origi-
nal streams are redistributed to the rest of the workers.
Other workers resemble worker 1 in the same way.

Sampling

Partition vector
generating —» Samples

\/ @ Original streams

Fig.1 First phase of data partitioning: sampling and gener-

ating partition vector

Worker n—

Repartitioning)

Worker 1

=P Original streams
— — = Partition vector
®= Partitioned streams

Fig.2 Second phase of data partitioning: data distributing

Thirdly, after the query task and data streams have
been distributed, we apply the repartition correction
factor to implement load shedding dynamically. Since
the third phase is not an emphasis of this paper, we
omit it.
1.2 Relevant definition

Consider a stream S containing an integer-valued
attribute X. The value set V of X is the set of values of
X that are presented in S. For each v e V, the frequency
J(v) is the number of tuples r e S with 7. X =v. We as-
sume that the elements of V have been sorted according
to some sorting parameter, most commonly according
to the numeric values of v,, i.e., V={v, | 1 <i<N}
where i <j iff v, <v;. Given this ordering, and using f;
=f(v,), the frequency set of X is the ordered set of
sut

A k-histogram'® of data distribution X is construc-
ted by partitioning the frequency set F of X into k ( =

frequencies F = {f}, f,, ..

1) intervals called buckets. In each bucket, we approxi-
mate the frequencies and values in some succinct fash-
ion. A k-histogram for V is said to be an equi-depth
histogram if each bucket size, bj, is exactly N/k. The
approximate data distribution can be used in place of
the actual distribution. Of course, the accuracy of any
operation performed using the histogram depends on
the accuracy of the approximation, which is determined
by two factors, the partitioning technique employed for
grouping values into buckets and the approximation
technique employed within each bucket.

Definition 1 ¢-approximate quantile

We say that a quantile summary is g-approximate
if it can be used to answer any quantile query to within
a precision of eN (N denotes computing size). In other
words, for any given rank r, an g-approximate quantile
summary returns a value whose rank r’ is guaranteed to
be within the interval [r — &N, r + eN].

Definition 2 §-deviant histogram

The maximum error metric for a k-histogram is
= max |b . = N/k

<j<k

defined as follows: A , where b]. de-

notes the number of the tuple in the i-th histogram. A

k-histogram with A, <§ is said to be a 5-deviant his-

togram, and satisfies the property that for all j, | <j<
k, |b, - N/k| <.

We require that every bucket in the histogram has

a size which has a small absolute difference with re-
spect to the bucket sizes in an exact equi-depth k-histo-
gram. Suppose that § is equal to N in our model.
Because there is a clear time-range semantic in the
CQ for power load, when listening to new attributes in-
volved in a new CQ, the new query plan will be carried
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out over redistributed data. The users can receive the
result after a tolerable period of delay. A typical con-
tinuous aggregation query for a power system can be
constructed as follows:

SELECT COUNT(¢,. X) FROM S WHERE VA-
RIANT (¢,. X -t,_,. X) > =500 WINDOW NOW -30

This CQ language returns the number of tuples
from stream S in the last 30 s time-window under the
constraint—the difference of the X value in the adja-
cent two tuples is not less than 500 kW. For conven-
ience, the notation used by this paper is described as
follows: S is a stream; X is an integer-valued attribute
in S;tis a tuple in S, e S; 1. X =v; f(v) is frequency
(i. e. the number of v); V is the value set V of X; k is
the number of sites ( corresponds to the number of the
bucket of the equi-depth histogram in this paper); N is
the size of the time-window involved in CQ; n is the
number of samples required; £ is the maximum approx-
imate error; § is the precision of constructing approxi-
mate an equi-depth histogram (6 =eN).

2 Sampling Method Adapted to Data Streams

We should consider the data distribution when
we determine the number of tuples that require skip-
ping over. This strategy can make up for the insuffi-
cient representative problem due to the case of differ-
ent change of tuples in the different periods of time.
We introduce the skip factor that records the character
of data-value changing in data streams, and take a par-
allel samples for the same category data streams de-
rived from the different sites based on a reservoir sam-
pling algorithm.

The skip factor is the timed function based on
historical data. The basic idea of the skip factor is, the
more quick the data changing is, the more the number
of tuples which are skipped. Let A, denote the variety
t.X-t,_,.X

t_- X
define A, as the move average of A, during 2m times-

m-1

tamps, A, = z A,/ 2m , where m is the experiential

i=-m

value. The skip factor, named SF(i), is defined as:
SF(i) ={

where i denotes the timestamp of tuples to be detec-

ratio of 7. X at i timestamp, A, = . We

true if A, > (sampling)
false otherwise ( skipping)

ted, and 7 is an experiential threshold.

Now we bound the number of random samples
required to guarantee that the resulting histogram is §-
deviant. We give essentially optimal formulas based
on theorem 4 in Ref. [6], describing the trade-off be-

tween the various parameters, notably k&, 8, and n.

Let §<N/k, an equi-depth k-histogram for a ran-
dom sample set R of size n from a value set V of size
N gives a §-deviant histogram for V with probability at

2
least 1 — p(p >0), provided that n Bw.

Or, equivalently, n= éml(:#
£

Algorithm 1
data streams

Improved reservoir sampling for

Input: N, k and probability p.

Output: the array R contained n samples.

1) Compute the sampling number 7, based on N,
and k, p.

2) Initial sampling count j, j«—1; pick a random
sample, and store into R[] .

3) Initial read pointer ¢ for original stream, t«—1.

4) Repeat

(D Generate an independent random variable Y.

2 Skip the next Y tuples in virtue of the skip
factor.

@ If (Y< =N)/ * select the next tuple to be-
come a candidate; randomly replace some tuple in
buffers * /

a) u« (int)(n % (rand ())./ * u obeys unique
distribution and u e [0, n - 1] */

b) Pick a random sample, and store into R[u];j
—j+1.

@ t—t+Y+1.

5) Until (j>n) or (t>N).

In this algorithm, step () is related to the skip
factor mentioned above. Due to limitation of space, we
omit its details. The maximum time complexity of this
algorithm is O(n(1 +1log(N/n))).

3 Generating Equi-Depth Histogram Algo-
rithm

The work that guarantees the number of tuples in
every two adjacent quantiles is approximately corre-
sponding to constructing an equi-depth histogram. We
propose a heuristic generating equi-depth histogram
algorithm and a shortcut effective generating equi-
depth histogram algorithm.

Let BucketList denote the bucket array, Buck-
etList[ i] (i € [0, 1,
BucketList[ i] (left border, frequency, right border)

..o k = 1]) 1is a triple,

consists of left border, the number of tuples in bucket
and right border.
3.1 Heuristic method

Algorithm 2 Incremental maintaining heuristic
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generating equi-depth histogram
Step 1
to an existing bucket interval, then modify the number

When a new tuple arrives, if it belongs

of this existing bucket. If it does not belong to an ex-
isting bucket interval and the total number of buckets
has not reached k, then create a new bucket. The left
and right borders of new buckets are #. X — § and ¢. X
+6, respectively, if overlapping happens at the bor-
ders of contiguous buckets, then shrink the left border
of new bucket to the right border of the previous
bucket and the right border of the new bucket to the
left border of the next bucket. If the tuple does not be-
long to an existing bucket interval and the number of
the buckets has already reached k, then insert it into
the closest bucket.

Step 2 Clean up all the buckets by merging and
splitting to meet equi-depth constraint. The principle
of merging is to merge contiguous buckets containing
a small quantity of tuples; the principle of splitting is
to split the bucket containing a large quantity of tup-
les.

We can choose the median of the number of
buckets to split. The difference between a large quan-
tity and a small quantity is judged by the comparison
between | BucketList[ i]. frequency - N/k | and §.If
| BucketList[ i]. frequency — N/k | > & then we say
this bucket is “a large quantity”; otherwise, we say
this bucket is “a small quantity”. The time complexity

of the algorithm is 0( LNkz).
e

3.2  Shortcut method

If the maximum number of buckets and the total
number of sampling data in every interval are already
known, the method to generate an equi-depth histo-
gram turns out to be relatively easy. We propose one
shortcut effective approximate algorithm in order to
assure that the difference between the number of tup-
les in the current buckets and the average number of
tuples in all the buckets is minimum when producing
each bucket border. The greedy tactics can achieve an
approximately optimal histogram.

Algorithm 3 Periodical update shortcut genera-
ting equi-depth histogram

Step 1 Scan all the tuples in the sampling set,
count the frequency of each attribute key, sort in as-
cending order, store these distinct keys and frequen-
cies in distinct value[O, 1, ..., D — 1] array, where D
denotes the number of distinct values, each unit of dis-
tinct value is a dual set (key, frequency).

Step 2 According to the precision and the max-

imum number of buckets, find the k + 1 position
among distinct values: 1, 1 + N, 1 + 2N, ..., 1 +
(k—-1)N,1 +kN =T, the first is 1, the last is T, where
N=(T -1)/k, assure that the number of key values
between every two continuous positions is approxi-
mately equal, and the difference between the number
of the bucket and N/k is the minimum.

For a given k, if the approximate precision is too
high, it will result in failure for this strategy. We can
set up the initial value of g, according to experience,
and then improve the precision and iteratively com-
pute to find minimal error & gradually.

Algorithm 3 offers adjustable precision. Its time
complexity is O(f(eN) Dlog( D)), where f(eN) de-
notes the time used to reach minimal error ¢ from ini-
tial value &,.

4 Experiment Evaluation

In order to validate the proposed model, we use
actual load data of a power system from one area in
Nanjing to test practical performance of this model.
We constructed the discrete event generator to simu-
late the AGC (automation generation control) sys-
tem, which read a tuple at a fixed interval (10 ms)
from the data sets and sent it to our model. There is an
analogy between the way a power-distributed-network
runs and the way this multiple data streams environ-
ment constructed by multiple generators runs. All data
streams derived from the distributed worker ( front-
end) possess the same measured attribute. Suppose
that the maximum error £ =0.05, p =0.95 and the
number of buckets in the partition vector is 4, which is
equal to the number of sites. We choose the aggregate
operation mentioned above to test the algorithm.

The experiments were conducted on a 4-node
shared-nothing cluster of 2. 66 GHz Pentium machines
in which every node had 256 MB main memory and a
80 GB hard disk. Connecting the machines was a 100
Mbit/s switched Ethernet network with a point-to-
point bandwidth of 100 Mbit/s and an aggregate band-
width of 800 Mbit/s in all-to-all communication. Each
machine was booted with version 2. 4. 18 of the Linux
kernel. For message passing between the Pentium
nodes, we used the LAM implementation of the MPI
communication standard. With the LAM implementa-
tion, we observed an average communication latency
of 460 ms and an average transfer rate of about
10 Mbyte/s.

Experiment 1 validates the relationship between
the number of samples and the execution time for gen-
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erating an equi-depth histogram. Experiment 1 ran 10
trials on a single site, initializing the random number
generator with a different seed each time.

Fig. 3 shows the running time used by our two
kinds of generating equi-depth histogram algorithm
and the existing algorithm ( called MRL', which is
the best previously known algorithm) over different
numbers of input samples. The execution time in
Fig. 3 is the mean of execution times. We can see that
the execution time of the shortcut algorithm is shorter
while its precision is lower. In contrast, the execution
time of the heuristics algorithm is longer, while its
precision is higher. The performance of the MRL al-
gorithm is intervenient.

300 -
250 —«&— Shortcut
% | —m— MRL
E 200 o Heuristic
® 150 |-
E 100 |
o~
50 |
Om !
10° 10* 10° 10°

Size of samples n
Fig.3 Variation in running time vs. sampling size for
shortcut, heuristic and MRL

The average time spent per stream tuple during
the execution of this shortcut algorithm compared with
the MRL algorithm is smaller, so our shortcut genera-
ting equi-depth histogram algorithm is suitable for on-
line processing. We can adjust the error § and the
number of samples n to implement the trade-off be-
tween the results’ precision and the computation ve-
locity.

Experiment 2 studies the effect of the varying
number of records in the stream on the required sam-
pling size. We fixed the maximum error to 0. 1, and
varied the number of tuples between 3 x 10%,6 x 10,
18 x 10* and 36 x 10*(i. e. the length of the time-win-
dow in the query is 30, 60, 180 and 360 s, respective-
ly). Fig. 4 shows that as the number of tuples in the
stream increases, a proportionately smaller percentage
of tuples need to be sampled to reduce the error below
a given threshold. The behavior is consistent with the
theoretical expression in section 3 which predicts that
the required sampling size drops at a rate of log( N/
n.

Experiment 3 validates the effect of the skip fac-
tor on the number of required samples. We observe
the change of sampling size n derived from the same
CQ in two kinds of period of time along with the load

6000

5140 5420
5000 -
£ 4000
£ 3000
g,
i
2000
1000
3.67.2 18 36
Number of tuples./10*

Fig.4 Sampling size vs. the number of tuples ( maximum
error<0. 05)

curve. Between 40 dot and 60 dot on the x-axis ( cor-
responding to the wee hours 3: 30 to 5: 00), the
change of load-value is gentle. We should pick the fe-
wer samples. However, between 120 dot and 140 dot
on the x-axis ( corresponding the antemeridian hours
10: 00 to 12: 00), the verity of the load-value is
quick. We should pick more samples. Suppose that the
length of the time-window is fixed. Fig. 5 shows that
the number of tuples that need to be sampled to a-
chieve a given error threshold remains almost constant
as the load data is streamed. This also conforms to the
expected affection of the skip factor in section 3.

6000

5000

:

Sampling size
w2
T

.53

50 110 190 270
Timestamp of sampling/min

Fig.5 Sampling size vs. sampling timestamp (length of
time-window is 100 min)

5 Conclusion

We propose a novel data partition method using
approximate techniques including sampling and an
equi-depth histogram, which supports a variable repar-
tition vector for dynamic load balancing. The experi-
ments prove that the proposed model adapts to some
application domains where the change of data-value
distribution obeys a certain rule, such as industry con-
trol or traffic control etc. Our data partitioning method
based on sampling can explicitly tailor the feature of
data distribution, and can be more efficient and adap-
tive in a given application scenario. This model is a
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feasible solution to online processing of time-varying
data streams in short response time. Improvement of
data streams algorithm efficiency and adaptive re- (5]
source management over data streams are on our fu-

ture research agenda. (6]
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