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Abstract: Surface electromyogram (EMG) signals were identified by fractal dimension. Two patterns of surface

EMG signals were acquired from 30 healthy volunteers’ right forearm flexor respectively in the process of

forearm supination (FS) and forearm pronation (FP). After the raw action surface EMG (ASEMG) signal was

decomposed into several sub-signals with wavelet packet transform ( WPT), five fractal dimensions were

respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.
The results show that calculated from the sub-signal in the band O to 125 Hz, the fractal dimensions of FS
ASEMG signals and FP ASEMG signals distributed in two different regions, and its error rate based on Bayes

decision was no more than 2. 26% . Therefore, the fractal dimension is an appropriate feature by which an FS
ASEMG signal is distinguished from an FP ASEMG signal.
Key words: action surface electromyogram ( ASEMG) signal; fractal dimension; wavelet packet transform

(WPT); fuzzy self-similarity; Bayes decision

A surface electromyogram (EMG) signal recorded
from the skin surface over limb muscles in the process
of limb actions is called an action surface electromyo-
gram (ASEMG) signal. Because ASEMG signals con-
tain the electrical and functional properties of limb
muscle contraction, some features extracted from
ASEMG signals can be used to identify different pat-
terns of ASEMG signals and control limb prosthe-
ses'' 7', So far, many parameters have been applied to
represent the features. In the control system which
Hudgins et al. !"" devised for powered upper-limb pros-
thesis, they utilized some time-domain parameters such
as zero crossings of the ASEMG signal. Because of the
random nature of the raw ASEMG signal, the ASEMG
signal was also analyzed as a stochastic process. For
example, Chang et al."® used the cepstral coefficients
of the ASEMG signal as the control command of the
man-machine interface. Later, some time-frequency fea-
tures of the ASEMG signal"”' were used to describe the
characteristics of the ASEMG signal.

However, the ASEMG signal is very complex and
nonlinear'”, so there is still much work to do so as to
make a right decision for different ASEMG signal pat-
terns. In recent years, nonlinear dynamics has been
greatly developed'”® and it has been clear that simple
nonlinear systems can exhibit highly complex behav-
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ior. In a complex signal exists the self-similarity phe-
nomenon, that is, there is a smaller structure that resem-
bles the larger scale structure in such complex medical
signals as EMG, EEG and ECG signalsm. Fractal di-
mension can be applied to determine the self-similarity
and has been applied in the case of the surface EMG
signal'® .
However, there are two factors that affect the cal-
culation of the fractal dimension from surface EMG
signals. One is that the measured value of fractal di-
mension calculated by the GP algorithm'” is very sen-
sitive to the signal’s initial value or the initial position
of the hypersphere!® . In order to reduce the sensitivity,
Sarkar and Leong!® proposed the method based on a
fuzzy self-similarity to calculate the fractal dimension.
The other is that an ASEMG signal is a signal with low
signal to noise ratio''” . In this paper, we categorize in-
formation into two kinds: discriminable information and
noise. The former includes the features by which one
pattern of ASEMG signal can be accurately distinguish-
ed from another pattern. Some information in an
ASEMG signal is able to characterize some common
characteristics of the ASEMG signal but is not helpful
for identifying different patterns of the ASEMG signal,
so the information is categorized as noise. In order to
evaluate fractal dimension by which different patterns
of ASEMG signals are accurately identified, an impor-
tant step is to effectively reduce noise from the
ASEMG signal before fractal dimension is estimated.
Hence, every ASEMG signal was decomposed into
several sub-signals with WPT in this paper. Then the
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authors calculated fractal dimensions from its raw sig-
nal and its sub-signals and compared their contribution
to identifying ASEMG signals. Finally a useful fre-
quency band was determined.

1 Material and Methodology

1.1 ASEMG acquisition

All ASEMG signals were recorded from the right
forearm flexor of 30 healthy volunteers in the EMG
room at Huashan Hospital in Shanghai, China. Two 5
mm diameter electrodes, set 2 cm apart, were put on the
skin surface over the flexor carpi radialis on the right
forearm along the flexor. The negative electrode was
placed nearer every volunteer’s heart than the positive
electrode to form a differential comparator amplifier.
The sampling frequency was 1 000 Hz. During the ac-
quisition process, every volunteer was instructed to
complete two different kinds of limb actions: FS and
FP. Two patterns of ASEMG signals lasting more than
1 000 ms™' were recorded elaborately from every
volunteer’s forearm flexor: one during FS and the other
during FP. Thus, among the 60 sets of ASEMG signals
acquired, there were two ASEMG signal patterns: FS
ASEMG signal and FP ASEMG signal, 30 sets for each
pattern.
1.2 Wavelet packet transform

Given a finite energy signal whose scaling space
is assumed as U;, WPT can decompose U, into small
subspaces U! in a dichotomous way''"". See Fig. 1.
U/'."1 shows the n-th subspace on the j-th resolution
level.

/ \
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Fig.1 Tree structure of WPT

The dichotomous way is realized by the following
recursive scheme:

U, =U"®U""  jelnel’ (1)
where j(j<0) is the resolution level; & denotes direct
sum; U7, ,, U,Z'1 and Uf"” are three close spaces corre-
sponding to u,(?), u,,(t) and u,, (). u,(t) satisfies

the following equation''":

Uy, (1) =423 h(kyu,(2t k)
kel (2)
Uy, (D) =42 g(k)u, (2t — k)

kel

where the function u, (t) can be identified with the
scaling function ¢ and u, (#) with the mother wavelet
;s h(k) and g(k) are the coefficients of a low-pass and
a high-pass filter, respectively; the sequence of func-

tion {u,}(n =0,1, ..., © ), which is generated from a
given function u, by Eq. (2), is called the wavelet
packet basis function.

When s(t) is decomposed to the second resolution
level (j = —2) with WPT, the whole scaling space U
with frequencies in the interval (0,2 ~'f.] is divided in-
to four subspaces with frequencies correspondingly in
the interval ((n-1)2"'f., n2’"'f.],n =1,2,3,4. The
sub-signal at Uj’.H, the n-th subspace on the j-th level,
can be reconstructed by

si(t) = ZDL‘" (1)

where D}" is the wavelet packet coefficients at U; "
and ¢; (7) is the wavelet function.
1.3 Fractal dimension

The most common way to calculate fractal dimen-
sion is correlation dimension (denoted by D, ). Correla-
tion dimension determines how the distribution of a
signal set scales up/down with decreasing/increasing
radius of each hypersphere. The correlation dimension
is often obtained by using the GP algorithm'” . In the
algorithm, correlation integral function is applied as
follows:

L(r) = 2 2 od,n (¥
N(N

kel (3)

tl/lj#z
where
1 ifd, <r
o(d., = v | # ] 5
(&1 {0 itd, >r 77 ¥

is Heaviside unit function, r is the radius of the hyper-
sphere, and d;; is an Euclidean distance between point
y; and y; in the reconstruction phase space (details in
appendix A).
D, can be estimated using the following formula:
- log(1,(r)
Dy =lim= e (©)
However, D, calculated by the traditional GP al-
gorithm varies significantly with slight change in point
position or with slight change of the initial hypersphere
position. It happens because the signal points inside the
hypersphere are treated equally and the signal points
just outside the hypersphere are not considered due to
Heaviside unit function 6(d,;, r). To reduce the effect,
Sarkar and Leong'® replaced (d;, r) with the Guas-
sian function

d,
u(du,r)—exp( —;) i] (7)
r

Here, because the boundary of the hypersphere is not
sharp but fuzzy, the plot of log(/.(r)) vs. log(r) be-
comes smooth. The correlation dimension varies less
with the change of initial position so that it can be
measured more accurately'® . In this paper, we employ
the method based on the fuzzy self-similarity to evalu-
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ate fractal dimension of an ASEMG signal.
2 Results

2.1 Choice of embedding dimension m

In the GP algorithm, D, is obtained by the D,(m)
slope, m=1,2,3, ... . When D,(m) does not change
with m increasing, this D,(m,) is regarded as the esti-
mate value of D,(see Fig.2). Fig.2 is the D,-m of an
FS ASEMG signal and an FP ASEMG signal from the
same volunteer. From Fig. 2, we find that D, (m) can
trend to a stable value when m > 17. After analyzing
statistically D,-m of all analyzed signals, we found that
when m > 15, D,(m) can trend to a stable value, no
matter whether the analyzed signal is a raw signal or a
sub-signal.
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Fig.2 Correlation dimension vs. embedding dimension

2.2 Choosing r range for ASEMG signal with fi-
nite sampling points

r is the radius of the hypersphere. An appropriate r
must be chosen so that D, can describe the structure of
self-similarity in the EMG signal. Choosing an appro-
priate r range for the Heaviside function is a worrisome
business requiring much computation time. For signals
with infinite sampling points, r should be set r—0. But
for real signals, the finite sampling points force us to
calculate the fractal dimension at a larger r. In this pa-
per, we get the r range by observing the results of the
following experiment. From half the minimum of the
distances between any two points in reconstruction
space to the maximum of the distances, the range is di-
vided into 99 equal intervals with 100 points. The value
at the points is regarded as r. The points from small to
large are identified by the number k from 1 to 100. Ac-
cording to Eq. (6), for all the identical pattern signals,
log(1.(r)) is plotted against log(r) in the same plot.
Fig.3 shows log(Z.(r)) vs. log(r) for the sub-signal

12 . .
021 it is no-

in U°,. According to Buczkowski’s study
ticeable from Fig. 3 that there are several dimensions
for every signal no matter whether it is an FP or FS
signal in U ,. The values at the middle flatter curve of
log(1.(r)) vs.log(r) are chosen as r, so the points are

about from 10 to 20 for an FP or FS signal in U°,.

With the same method, we get r range for the sub-sig-
nals in Uy, U°,, U', and U',. Their k is listed in Tab. 1.

log(Z.(r))

log(1.(r))

-3.5 -2.5 -1.5 -0.5 0.5
log(r)
(b)
Fig.3 Plot of log(/,(r)) vs.log(r) to determine an ap-

propriate r. (a) For filtered FP signals; (b) For filtered FS signals

Tab.1 The range of k
Subspace I v, U, v, v,

k 10to20 5tol5 40t050 10to20 20 to 30

2.3 Distribution of fractal dimensions

For every FP and FS signal, the dimension of its
raw signal in U) and the dimensions of its sub-signals
in U°,, U',, U’, and U', were calculated, and the
fractal dimensions were respectively represented with
Dy, Dy, Dy, Dy, and D,,. Fig. 4 shows the distribution
of the fractal dimensions of 30 sets of FP signals and
30 sets of FS signals. From Fig. 4, we obtained two re-
sults. One was that the fractal dimensions of raw sig-
nals were more widely dispersed than the fractal di-
mensions of sub-signals. D,, ranged from 0.5 to 3, no
matter whether D,, was of FS signal or of FP signal.
However, the fractal dimensions of sub-signals concen-
trated on a narrower range. The range became much
smaller if Dy, and D, of the FP sub-signal or of the FS
sub-signal was considered alone (see Tab.2). The oth-
er was that the FS signal seemed to be distinguished
from the FP signal by D,, or D,,, not by the other frac-
tal dimensions. As for Dy, D,, and D,,, the fractal di-
mensions of FS signals were mixed completely together
with those of FP signals. However, for D, and D,,, the
fractal dimensions of most FS signals and of most FP
signals respectively distributed in two separable re-
gions, and the fractal dimensions of most FS signals
were larger than those of most FP signals. Specially,
D, region of the FS signal did not superpose with that
of the FP signal, and all FS ASEMG signals could be
completely distinguished from all FP ASEMG signals
by their D,,. Some statistical parameters on D, and D,,
were listed in Tab. 2.
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Fig.4 Distribution of fractal dimensions

Tab.2 Statistical parameters on Dy and D,
Dy, Dy,
FP FS FP FS

Minimum value 1.1933 1.7812 1.3122 1.7372
Maximum value ~ 2.1849 2.8664 1.6554 2.1661
Average value p 1.5217 2.3318 1.5116 1.9441
Standard deviation ¢ 0.2541 0.2524 0.0850 0.1322

Error decision rate R,/ % 5.49 2.26

Parameters

2.4 Error decision rate based on Bayes decision
Let w, and w, be the two classes (FS and FP

ASEMG signal patterns) to which our patterns belong.
Feature vector x represents an unknown pattern. The
Bayes rule is

Plwyx) = PE/@IP@) (8)

Y p(x/w)P(w)

where p(w,/x) is the i-th conditional probability and
P(w,) is priori probability. In this paper, P(w,) =
P(w,) =1/2. p(x/w,) is the class-conditional probabil-
ity density function. One of the most commonly en-
countered probability density functions in practice is
the Gaussian or normal density function. The major
reasons for its popularity are its computational tracta-
bility and the fact that it models adequately a large
number of cases. According to the results above, D,
and D, can be regarded as the feature by which two
patterns of ASEMG signals are identified. The normal
density functions of feature space constituted by 30 D,
or 30 D,, are depicted in Fig.5. The normal distribu-
tion parameters u and ¢ are listed in Tab. 2. The result
that o of D, is much less than o of Dy, means that D,
can describe more accurately nonlinear properties of

2.0r
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0 0.51.01.52.02.53.03.54.0
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Fig. 5 Normal distribution fitting curves of the feature
space constituted by Dy, or Dy,. (a) Dy,.(b) Dy,
ASEMG signals than g of D,,.

The Bayes classification rules can be stated as

If p(w,/x) >p(w,/x),x is classified to w,

If p(w,/x) <p(w,/x),x is classified to w,

If the straight line at x, is the threshold partitio-
ning the feature space into regions: FP and FS ( see
Fig.5), all values of x in FP are classified as w,, and
all values of x in FS are classified as w,. It is obvious
that decision errors are unavoidable. The total proba-
bility, P,, of committing a decision error is given by

Po= [ pxwde + [ px/w)dx (9
c =) pends + ] pvwpdx 9)

The error decision rate is calculated by
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R, =P, x100% (10)
X, is the Dy, or Dy, value at the cross point of the
normal density functions. For D, and D, x, respec-
tively are 1. 927 6 and 1. 692 2. In other words, if D,, >
1. 927 6, ASEMG signal is classified as FS pattern; oth-
erwise, as FP pattern. In the same way, if D, >
1. 692 2, ASEMG signal is classified as FS pattern; oth-
erwise, as FP pattern. The error decision rates of D,
and Dy, are respectively 5.49% and 2.26% .

3 Discussion

In the forearm flexor, there are many muscles
(e. g. brachioradialis, pronator teres, flexor carpi radia-
lis, flexor digitorum superficialis, etc. ) taking charge
of or assisting forearm actions. Major motor unit action
potentials (MUAPs) of ASEMG signals analyzed in
this study obviously come from the muscles. When a
volunteer wants to take FS or FP, the motor units
(MUs) of the muscles responsible for the limb action
are stimulated by excitation from the ulnar or median
nerve to actively change the muscles contraction level,
so MUAPs from the muscles increase and most MUAPs
from other muscles do not increase. Because the tissues
between MUs and the surface electrodes have the effect
of a low pass filter on MUAPs""”, MUAPs from the
MUs closer to surface electrode have stronger ampli-
tude and higher frequency, and MUAPs from the far-
ther or deeper MUs have weaker amplitude and lower
frequency. MUAP is the basis unit of the ASEMG sig-
nal. The properties (such as spectral energy distribu-
tion) of the ASEMG signal therefore change with the
change of the different muscles’ contribution levels. It
is clear that between forearm action and its ASEMG
signal there is a relationship which can be signified
with some physical parameters such as amplitude, fre-
quency or fractal dimension. Therefore, the parameters
extracted from the local frequency band should more
accurately generalize the general characteristics of FS
ASEMG signal pattern and FP ASEMG signal pattern
than the parameters from the whole frequency band.

In order to remove the noise, Xu and Xiao"'” de-
signed a digital filter with a weighted window. Al-
though the digital filter has good performance, the per-
formance of the filter depends on the properties of sur-
face EMG signal and an appropriately weighted win-
dow. The ASEMG signal is obviously a non-stationary
signal, so an appropriately weighted window should be
dependent on time. Thus, designing the appropriately
weighted window will become more difficult and con-
sume more time. Because of the adaptive time-frequen-
cy window of WPT, the components in the surface
EMG signal can be distributed in their own frequency

bands by WPT. On the other hand, different frequency
resolutions for different regions in the frequency spec-
tra are easily selected. WPT can therefore act as a filter
with which the discriminable information is separated
from the noise.

When fractal dimension is calculated directly from
the raw ASEMG signal, the fractal dimension cannot
undoubtedly be used as the feature which identifies FS
ASEMG signal and FP ASEMG signal, because D, of
two patterns of ASEMG signals mix together. Obvious-
ly, it is the noise in the 250 to 500 Hz band that inter-
feres with the accurate calculation of fractal dimen-
sion. However, fractal dimensions calculated from the
sub-signals inU” (0 to 250 Hz) and U’ ,(0 to 125 Hz)
can take on general characteristics of different patterns
of ASEMG signals, because D, or D, of most FS
ASEMG signals are bigger than those of most FP
ASEMG signals. Even FP and FS ASEMG signals can
be completely identified by their D,. FS ASEMG sig-
nals cannot be separated from FP signals by D,, and
D,,,because D,, and D, of FS ASEMG signals mix to-
gether with those of FP ASEMG signals. So we could
infer that the noise energy in 125 to 500 Hz is much
more than the discriminable information energy. Note
that the noise may include the information which re-
flects the common information about the surface EMG
signal but does not reflect the general characteristics
about FP ASEMG signal pattern or FS ASEMG signal
pattern. The results show that ASEMG signals in O to
125 Hz should hide most of the discriminable informa-
tion.

In summary, the results demonstrated that fractal
dimension could be used to determine the functional
characteristics of limb muscles like the time domain
parameters, cepstral coefficients and the time-frequency
features. When noise in the raw ASEMG signal is re-
duced much, the fractal dimension of the ASEMG sig-
nal could accurately describe the nonlinear properties
of different ASEMG signals.

4 Conclusion

The fuzzy similarity-based correlation dimension
is an efficient method to calculate the fractal dimension
from a complex ASEMG signal. The fractal dimension
calculated by the method can describe the nonlinear
properties of ASEMG signals. The fractal dimension
estimated from ASEMG signals in 0 to 125 Hz is able
to accurately identify FS ASEMG signals and FP
ASEMG signals.

Appendix A m-dimensional phase space recon-
struction
According to Takens’ theorem, in order to suffi-
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ciently disclose the information being hided medical
time series, a time series, x;, i =1, 2, ..., L, is often
turned into a new m-dimensional phase space in the

following way. L is the length of the signal.

Vi =X X s s X (s )
Yo ={x, %, -~-vx2+(m71)f}

i {xl’xl+f’ ""xi+(m—l)r}
v =X Xy s oo Xy (menyr )

where N is the number of the points in the phase space
(N=L-(m-1)7).In the reconstruction phase space,
there are two important parameters: embedding dimen-
sion m and time delay 7. Because real ASEMG signal
is finite and noisy, an appropriate 7 must be chosen to
ensure that the elements of y, are independent and that
the same 7 can be used for all embedding dimensions
m. Many methods have been developed to gain an ap-
propriate 7, they include the autocorrelation function,

5] Due to its

the mutual information and C-C method
convenience and fast calculation, in this paper the auto-
correlation function is adopted to get the time delay 7
which is determined by the first zero of the autocorre-
lation function. An embedding dimension m should sat-
"V m=2D +1 where D is the fractal

dimension of the real medical signal.

isfy the condition
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