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Weak solution for a fourth-order nonlinear wave equation

Chen Caisheng Ren Lei

(College of Science, Hohai University, Nanjing 210098, China)

Abstract: The existence and the nonexistence, the uniqueness and the energy decay estimate of solution for the
fourth-order nonlinear wave equation u, +aA’ u — bAu, —BAu +u, |u,|" + g(u) =0 in 2 x (0, ) are studied
with the boundary condition u =% =0 on of2 and the initial condition u(x,0) =u,(x), u,(x,0) =u,(x,0) in
v
bounded domain 2 C R", n=1. The energy decay rate of the global solution is estimated by the multiplier
method. The blow-up result of the solution in finite time is established by the ideal of a potential well theory,
and the existence of the solution is gotten by the Galekin approximation method.
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Recently, Varlamo'"! considered the first initial boundary value problem for the damped Boussinesq equation in
a plane:

u, +oal’u -2bAu, +BA =0 re(0,1); t>0 (1)
u(r,0) =&’(r), u,(r,0) =&y(r) re (0,1) (2)
u,(0,1) =0, wu(l,f) =Au(l,1) =0 >0 (3)

Since the initial data are radially symmetric, the solution depends only on the polar radius r and the time ¢. By
the theory of Fourier-Bessel series, Varlamo established the existence, the uniqueness and the long-time asymptotic
behavior for the solution of (1) to (3).

In this paper we are concerned with the existence and the nonexistence, the uniqueness and the energy decay
estimate of the global solution for the wave equation of the fourth-order with nonlinear damping and source terms of
the type:

u, +aA> u—bAu, —BAu +u,|u, | +g(u) =0 in 2x(0, ) (4)
u(x,0) =uy(x), u,(x,0) =u,(x,0) in ) (5)
=20 onaQx[0, ) (6)

v

where (2 is a bounded domain in R", n=1 with the smooth boundary 9(2; v is the outward unit normal vector to 9(2;
a, B, b>0; r=0.

If we take into account the effects of damping and sources, Eq. (4) can be looked at as a perturbation of the
wave equation (1) in which the term BAu2 is replaced by u, \ u, "+ g(u). Eq. (4) is also a generalization of the Per-

. . 2,3
trovsky equation. Guesmia'>”

studied the existence, uniqueness and energy decay of the solution for the Petrovsky
equation with the initial boundary value conditions (5) and (6).

In this paper we will use the multiplier method in Ref. [4] to obtain the energy decay estimate of the global
solution for (4) to (6). The blow-up result of the solution in finite time will be obtained from the ideal of potential
well theory introduced by Payne and Sattinger'” . The methods for the existence and uniqueness are standard.

If u(tr) is a solution of the problem (4) to (6), then we define its energy E(f) by the following formula:

E(1) :%L(u,z(t) +a(Au(t))’® +8 | Vu(r) |?)dx +L G(u(t))dx t=0 (7

with G(u) = f g(s)ds,u e R' = (=, + o). Our main results are as follows.
0

Theorem 1  Suppose that
(H,) g(u) is a continuous function with g(u)u =0, and there exist the constants k, p >0 such that \ g(u) | <
klul?, | g'(uw) | <k|ul|l”"", where p satisfies p>1 if l<n<4, 1 <p<n/(n-4) if n >4.
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(H,) rsatisfies r=0 if 1sn<4, 0<r<2n/(n-4) if n >4.
Then, for the given u, e H'(2) N H,(()), u, € H,(()), the initial boundary value problem (4) to (6) admits a
unique solution u(f) satisfying
u(t) el (R HNH)NC(R ;Hy), u,eli(R";H), u; eL, (R";L%) (8)

where R* =[0, « ). Furthermore, the energy function E(¢) is nonnegative and nonincreasing and has the decay esti-

mate
E()<C(1+0)™""  Yt=0if r>0 9)
with some constant C >0 depending on the initial energy E(0), and
E(t)<Ce™ Vt=0if r=0 (10)

with some A >0 independent of the initial data.

Theorem 2 Assume that g(u) = —u | u | """ and (H,) hold, where p >1 if ISn<4;1 <p<n/(n-4) if n >
4. Then there exists d >0 such that if u, e H' (2) NH.(Q), u, € H,(2) and K(u,) >0, J(u,) <d, E(0) <d, the
problem (4) to (6) admits a unique solution u(¢) satisfying (8) to (10), where

K(u) =allAul; +l Vull - lulys YueHi()
Jwy =27 CallAully +Bl Vull) —=(p+1) ullb:  YueH ()
E0) =27 (lu, I3 +allAuy I +Blluy ) = (p+1) g [l

If K(u,) <0, we have the following blow-up theorem for the problem (4) to (6).

Theorem 3 Let g(u) = —u|u|”"',p>r+1 and (H,) holds, and u, € H,' NH., u, € H.. Then there exists
d >0 such that if K(u,) <0, J(u,) <d, E(0) <d, the problem (4) to (6) does not admit a global solution u(#) satis-
fying

u(t) eL” (R HXQ), u,el”(R*;HXD) (11)
For the proof of the above results, we need the following lemmas.
Lemma 1 Let y(7) be a nonnegative differential and nonincreasing function on R” satisfying

f Y () dr < Ay(s)

for all 0<<s <t < + o« with the constants r, A >0. Then for any =0, we have
y()<C(l+1) 7" if r>0; y(H) <Ce™ if r=0
where C is a constant depending only on y(0) and u >0 is independent of y(0). Its proof can be found in Ref. [4].
From Sobolev’s embedding theorems, we have
Lemma 2% Let Q be a bounded domain in R" with smooth boundary (2. Then there exist positive con-
stants C, and C, depending only on the geometry of (2 such that

lulloy <C lAul,  VueHy)(Q;  lullpe <Gl Vul,  VYueH (0
1 Proof of Theorem 1

We suppose that all the assumptions hold in theorem 1. Let u(f) be a weak solution of (4) to (6). As in Ref.
[6], we can use the Galekin approximation method to get the existence of the solution u(¢) satisfying formula (8).
Since it is a standard procedure, here we omit the proof of the existence. In the following, we give the proof of the
uniqueness and the decay estimate for the energy E(7).

We first consider the uniqueness. Let u(¢) and v(t) be two solutions of (4) to (6) which satisfying formula
(8).Denote w(t) =u(t) —v(t). Then w(t) satisfies

w, +aA*w —bAw, —BAW +u, | u,|" =v, [v,|" +g(u) —g(v) =0 in 2x (0, %) (12)
w(x,0) =w,(x,0) in (2 w:gl:O on 92 x[0, =) (13)

v

Multiplying Eq. (12) by w, and integrating over (2, we have
y'(1) = -h(t) ~H(D) =bl[ Vw3 =0 (14)

where
y(1) =Lif[\w(t) > +alAw,|* +B| Vw(r) |*1dx
2 dtlg ! !
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HD) = [ (g(u) = g(v)w,dx
" is nondecreasing, we have (f({) —fin))({ -n)=0forall /,ne R' and hence

Since the function f(s) =s|s
h(t)=0inR".
On the other hand, by the assumption (H,) and the Holder inequality, we have

p-1

Heo |< [ TG =g | w, [dv < €f Clulr™ + [v 17 [w T, [y < CClulli, + Ivligo,) Tl Tl
where
1 1 1
—t— =7 Apu>1
X2 K

If 1 <n<4, we then see from the assumption u(?), v(t) € L,..(R"; Hé(())) and the Sobolev’s embedding theo-
rem that for any 7 >0, and A, u >1,

(0 a1y <K Nu(D) o <K, [ Au(o) |, <K, (D) 0<I<T

”V(t) H/\(p*l)gKl HAV(I) HZSKz(T)’ HW(I) HM$K1 ”AW(I) Hz O<t<T
where the constant K, is independent of 7 and K, depends on T.
If n>4, let A =n/2,u=n" =2n/(n -4) and we obtain
”U(t) Hn(p-l)/z <K, H“(t) Hn* <K, ”Au(t) Hz <K,(7) O=st<T
) v <K (D), w(o)ll,. <K [law(n) [, 0 t<T

Hence we have
|H() | <K, (D) [Awl, [w, [, <K, (D ([aw() [+ lw, (0 [ 0<t<T; y'() <K, (Dy(t) O0<i<T
(15)
For the decay estimate of the energy E(t), by lemma 1, it is sufficient to prove that the energy E(¢) of the
solution u(¢) is nonnegative and nonincreasing in R* and satisfies the inequality

fTE”?(r) dr < CE(s) (16)

for all 0<<s <7 < . In what follows we will denote by C, a generic positive constant independent of s, ¢. In the
following, we consider the case r >0, and the case r =0 can be treated similarly.
First, multiplying Eq. (4) by u, and integrating over (2, we have
E'(D) = = llu(o ;23 bl Va0 |3 (17)
This shows that the energy E(f) is nonincreasing. It is obvious that E(7) is nonnegative since g(u)u=0 in R'.
Next, multiplying Eq. (4) by E§( ) u(t) and integrating over {2 x [ s, 7], we obtain
2f ET'(1)dt = A, +A, +A, +A, +A, (18)
— | 5 T - ! 5l 4 - _k T 217 —
where A, [EZ(I)L u ”’dx]s’ A = jE (HE (r)fnuu,dxdz, A, S LEZD [ V() 317 As

br(" r_ ) s .
ZfsEz "OE(D | V(o |Pd, A, = j EZL(ZM,Z — uu, |, | ") dxdr.

Then, from the definition of E(f) and the Sobolev inequality, we observe that

1
e, (2) 1, ey [, TV uCo) 1, Ao [, < CE> (1) (19)
Now, we can derive from (19) that
(AL 1A, L 1AL TA I < CE' 2 (s) (20)
for all 0<<s <7 < 0. Note that
2
e, (0) I <Cllu,(0) [I},, <CC - E'(1))7> (21)
Then for any £ >0,
2% (1) |u,(1) |5 <eE' "> (1) + C,( ~E'(1) (22)
2[ EX() |u(n) [pdr < o] E'F(ndr + CE(s) (23)
Using the assumption (H,), Sobolev’s embedding inequality and lemma 2, yield
lull,..<Cllaul,  YueH (D (24)

with some C >0.
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Furthermore, we obtain from (19) and (24) that
luco ;3 < CE" "= (1) (25)
Hence, we have for any £ >0 that
f uu, | u, |"dx
(0]
Finally, (18) to (26) give that

< elull2 +Cllul2 < CE™ (1 - CE® (26)

r+2 r+2

(2-¢-C EZ(O))f E”’(t)dt C. (E“7(s) +E(s)) < C.(1 +E2L(0))E(s)

If we choose small £ >0, then there exists C >0 such that (16) holds and the decay estimate (9) follows from
lemma 1.

2 Proof of Theorem 2

To get the proof of theorem 2, we need some preparations. Let u(#) be a solution of the equation
u, + ol u—bAu, —BAu+u, |u,|"=ulul"" in2x(0,T,,) (27)
with the initial boundary data (5) and (6), T, < . Following the ideal of the potential well theory (see Refs.
[5,7]), we define

d =inf(supJ(Ag): @ € Hy()\ {0}) (28)
By Sobolev’s inequality, we know that d >0. We denote
S, = {e e H(D) |K(¢) >0,J(¢) <d} U {0}, S, ={pe H(D |kg) <0,J(¢) <d} (29)

For the set S, S,, we have

Lemma 3 Let u(¢) be a solution of (27) with the initial boundary data (5) and (6) in [0, T,,,) . If there is
at,el0,T,,) such that u(z,) S,(S,) and E(¢t,) <d, then u(¢) remains in S,(S,) for any ¢ €[0,7,,,)-

Proof We only consider u(t,) e S,, the other case can be treated similarly. Assume that there is ¢, > ¢, such
that u(t) € S, forte [¢,,t,) and u(t,) ¢ S,. From the definition of S, and the continuity in ¢ of J(u(?)) and
K(u(t)), we have

Case 1 J(u(t))) =d, or Case2 K(u(t)) =0
From (17), J(u(t))) <E(t,) <E(t,) <d. So case | is impossible. Let case 2 hold, that is

max

allduCt) I +8 | VauCe) I = lluce) 122 (30)
On the other hand, we have
d ) .
ap/ () =28l V u(t) [+ e 1AuCt) 15 = A7 [ue) [27] (31)

Then (30) and (31) imply that A =1 and sug]()\u( t,)) =J(u(t,)) <d, which contradicts to the definition of d.
A>

Therefore, case 2 is impossible as well.
Similarly, we can prove that:

Lemma 4 Let u(7) be a solution of (4) to (6) for t [0, T, ). If there exists z, [0, T,,,) such that
u(t,) €S, and E(t,) <d, then
+1
Bl Vu(n [ +aldun |3 >24 57 reln, T (32)

The proof of (32) is similar to that of lemma 2.2 in Ref. [8] and is omitted.
Proof of theorem 2
From lemma 3, we know that for re[¢,, T,,,), u(?) satisfies

max

K(u(t)) =0 or a||Au(t) I3 +81 Vu(n ||2 Hu(t) (1o (33)
Ju(n) = CallAutn |3+ Tutn By -~ ~lun 2= (aHAu(t) IE+l vun ) (34)
Furthermore, from (17) and (34), we have that for te [to, T )

=
p+l 2(
max

d> E) ZE(D) = [0 [ 470 =30 [+ 527 allducn [+ 81 Tun [ (39)

2( + 1)
Inequality (35) and the continuation principle lead to the global existence of the solution, i.e., T, = o . Similar

to the proof of theorem 1, we are able to derive the integral inequality (16) under the assumptions of theorem 2,
so the energy E(f) decay estimate (9) is brought out.
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3 Proof of Theorem 3

We suppose that the global solution u(f) of (4) to (6) exists for all #=0. Since u( ) satisfies (11), E(?) is
bounded. Then we have from (17) that

j;(”u,(s) b V(s |Dds = EQ) —E() <M 120 (36)

r+2
for some constants M >0. This gives thatj |u,(s)|ds < M. Hence, by the Holder inequality, we have
0

r+2

JO lu(s)Pds < Are 120 (37)

with some A >0. Moreover, by lemma 4, we have K(u(?)) <0, for t=0. This implies that there exists C, >0 such
that
lucty [E<C lluco ;s =0 (38)

p+1

To estimate the integral f uu, |y, |"dx, we use the Holder inequality and so-called interpolation inequality
0]

[ Ve, |, e < ey o (o 1728 < ey 3 oy 352 o
with A =2(p-r-1)/(p =1)(r +2) >0. Then, by using inequality (38), we obtain
u(t) I3 1uCo) [0 < Clluo 195772 lucey 12, , < Clluco 175072

where 0 =(p-1)A/2+1 -(p+1)/(r+2) =0. Then we have from the Young’s inequality that
r+2 (39)

r+2

and get

r+l
r+2

p+l

[ T |, 10 < oy 721+ €.l (o
Now we denote F(t) = ||u(?) |5 and we will prove that F(f) must blow up in finite time. Note that
F'(t) =2\ u, ()|} —2K(u(t)) - ZLW, lu, |"dx + ZbLM,Audx (40)
For any o >2,t >0, we have the following estimate by lemma 4 and Young’s inequality,

—K(u(1) +bquudx>—K(u(t)) +o(E(t) —E0)) +bju,Audx>—K(u(r)) +

T lulyz +

o(E(t) — E0)) —agf(Au) dx ——ju dx = (

+
2 2 g g 2
(alauli +BIVul) (S 1 —&)=oBO) +(& =2 )z =
- 2d(p +1)
(1= gt + (5 =1 =) 2L~ oBO) —alu (4n
where p = b (ae) ' —0/2 \ and ¢ >0 is arbitrary and will be determined later.

If we choose the small ¢ and o >2 so that

(p-1)(d-E0)) o 2d(p+1)(1 +8) _
0 <dp+3) -(p-nEO) 27T dGpeny —(p-nEQ) <7D
then we have from (39) to (41) that
F"(z) +C llu (D 75 = —pllu, (0 15+, luo) 127 +p, (42)

withyu, =1-e-0/(p+ 1),/.[,2 =d(p+1)(oc-2-2&)/(p-1) —o E(0) >0.
Integrating inequality (42) twice and applying (36) and (37), we get the result that there exist C;, >0 and ¢,
>0 such that
F(t)y=Cr for t=1, (43)
This shows that
lu(|,=C, t  fort=t, (44)
By an iterative procedure, we obtain from (44) that

F'(t) +Cllu(n 152 —plu (o [5 +p luC 577 +po= -pllu () |5 40 +p58 for ez, (45)
This implies that

F(1) = |u(t) F=Ar*  for t=1,=1, (46)
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with some A >0.

On the other hand, we have from (36) that
t t
o Iy = Nt s+ [ () s < Tt + 0] () s <
0 0

luCip) l, + [ Nlu(s) [2ds + Cot =) < Gt + €, fort >4, =1,
o

r+2

This contradicts (46) . Hence the solution u#(#) must blow up in finite time.
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