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Lower bound on BER performance
for maximal ratio combining with weighting errors
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Abstract: The theoretical lower bounds on mean squared channel estimation errors for typical fading channels
are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the
lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean
squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with
Gaussian distributed weighting errors on independent and identically distributed (i.i. d) fading channels are
presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER
performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of
channel estimate decreases.
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Of all diversity linear-combining schemes, maximal ratio combining is a theoretically optimal combiner since it
provides the highest average output signal-to-noise ratio (SNR) and the lowest probability of deep fades. Often pre-
vious works assume that the weighting of the diversity branches is perfectly done by using perfect knowledge of the
branch signal-to-noise ratios. Few results regarding the effects of imperfect weighting on the performance of maxi-
mal ratio combining (MRC) are available.

In Ref. [1], Gans models the channel estimation errors in the practical MRC as being complex Gaussian and
the probability density function (PDF) of the output SNR is found based on this assumption. The effects of weigh-
ting errors on bit error rates (BERs) are not investigated. In Refs. [2 —4], BERs are given for an arbitrary modula-
tion format used MRC when an ad hoc estimator based on pilot signal is used to find the channel weights. Howev-
er, the lower bounds on the mean squared channel estimation errors are still to be solved.

In this paper, we present the lower bounds on the mean squared channel estimation errors by using the infinite-
length and non-causal Wiener filter and derive the exact closed-form expressions of the lower bounds for the typical
Doppler power spectra introduced by the mobile channels. The lower bounds on BER for maximal ratio combining
with Gaussian distributed weighting errors on independent and identically distributed (i.i. d) fading channels are
then obtained according to the analytical expressions that have been derived.

1 System Model

Consider the operation of predetection L-branch MRC on independent and identically distributed fading chan-
nels. The received signals are assumed to be corrupted by independent additive white Gaussian noises ( AWGNS)
with power spectral density N,/2. Thus, the combiner input from the i-th channel,i =1,2, ..., L is

zi(n) =a(n)u,(n) +w,(n) (D
where «;(n) is the complex Gaussian channel gain multiplying the transmitted information signal u;(n), w,(n) is
the noise, and 7 is the discrete time index. The ideal MRC output is given by'>®

L *
a; (n)
= N, z,(n) (2)

i=1

where «;" (n) represents the complex conjugate of «;(n), and N, is the mean square noise power on the i-th channel.

In a practical combiner, the combiner weights «,” (n)/N, cannot be determined perfectly. In this paper, it is

assumed that a pilot channel is transmitted with the data signal for combining purposes and a complex Gaussian
error will result in the weighting factors &, (n), which are estimates of «," (n) derived from the pilot signal.
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2 Lower Bound on Mean Squared Channel Estimation Error

2.1 Minimum mean-square error (MMSE) of channel estimate
The received channel gain information X(n) of each path can be written as
X(n) =a(n) +v(n) (3)
where a(n) is an arbitrary one-path channel parameter to be considered later, which is hereby modeled as a wide-
sense stationary discrete-time complex Gaussian random process, and v(n) is the zero-mean additive complex
white Gaussian noise.
An estimate of a(n) based on Eq. (3) can be obtained by passing X(#) through an infinite-length, non-caus-

al filter, say Z(k) , resulting in

a(n) = 3 X(n =k h(k)* (4)

k=-o

The optimal filter minimizing E[ |a(n) —@&(n) |*] is known as the ideal Wiener filter, and its frequency re-
sponse obeys

Jo jo
Su(@) | Sule) )
Sx(e”)  S,.(e") +85,,(e”)
where S,,(e"), Saa(ej“’) and S, ( e!) are the power spectra of the process X(n), a(n) and v(n), respectively;
and {a(n)} and {v(n)} are assumed to be uncorrelated. Furthermore, the channel estimate ¢(n) and the estima-
tion error e(n) are stationary processes with their power spectra shown as (see appendix A)
S2 (e")

H(e) =

S. ejw = - . 6
a(e”) S, (&) +8,,(e") (6)
and
. S _(e“)s, (e
Se(e_lw) — ocot(‘ ) vv( ) (7)
S..(e) +8S,.(e")
From the above, the minimum mean-square error of the channel estimate is obtained as
1™ S.(e)8,.(e)

E 2 - = aa i v ’ 8
Uem P1 =5 ] e s 99 (8)

The ideal Wiener filter provides a lower bound on the attainable error. This can be verified as follows: when
we consider a length-N filter, say 4" (k), which is commonly used for practical applications, the cost function can
be expressed as

Jow =0 —PyRy' P, (9)
where R, = E[X(n)X"(n)], P, =E[X(n)a"(n)] and ¢’ is the channel average power. X(n) = {X(n -N), ...,
X(n+N)}" forodd N, and X(n) ={X(n=N+1),...,X(n+N)}" for even N.

When the filter tap becomes N + 1, the decrement of the cost function can be given by

JZin_in;l:P2+1R1\711PN+1_P2R1\7|PN (10)

After some mathematical manipulations, Eq. (10) can be rewritten as (see appendix B)

H 32
(Fovenn ~Wont P)

Join = I’ = R for odd N
o’ —P'R;'P o
_ H P 2
JN g :% for even N
g - N
where P ={ry,ry_;,....,r,}", wo, =Ry Py, and r;, =E[X(n) X" (n—i)] denotes the auto-correlation function

of the received channel gain information. According to the Wiener filter theorem'”, the decrement of the cost
function must be larger than or equal to 0. This result clearly indicates that the MMSE for a finite-length filter
takes J7,, as its lower limit.
2.2 Closed-form expressions for different Doppler spectra

In this section we will derive the exact closed-form expressions of the lower bounds for different channel
Doppler spectra.

When the mobile channel has a flat Doppler power spectrum with cutoff frequency at = f,, where f, denotes
the maximum Doppler frequency, the frequency response of the ideal Wiener filter has the following expression:

o’ (12)

H(e") :—Ts(02 +2f07)
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where ¢ is the power spectrum density of noise, ¢ is the average power of the fading channel, and T repre-
sents the sampling period of channel parameter. The lower bound on the normalized mean squared channel estima-
tion error can be derived as

Juin(H(R)) 1 [ 7, 2faTs

d . vE v
o’ 27T —oq T (0’ +2fd0' ) §SNR +2f,Ts

(13)
where signal-to-noise ratio fgg =0~ Ts/ 0.

When the mobile channel has the classical U-shaped Doppler power spectrum'® characteristic of isotropic
scattering with cutoff frequency at +f,, the frequency response of the ideal Wiener filter has the following ex-
pression:

H(e") = 20° (14)

20'2TS +o a)i -
where the digital frequency w, =2mf,Ts. The lower bound on normalized mean squared channel estimation error
can be derived as

/A om — 8§SNRarctan( 2o~ ~ )

4§SNR Wy

do = (15)

01207 Ty +oon/wy — @ ™ ’\/4§§NR - wg
In some situations, it is appropriate to model the propagation environment as consisting of a strong specular com-
ponent plus a scatter component. In this case, the frequency response might have the form as

H(e") = 20°T; + Ko \Jwy ~ 08 ~ @00, (16)

20° Ty + TsKo’ mé(w —w,c086,) +To(K +1) o /o, —@°
where 6, is the angle of the arrival of the specular component, and K is the ratio of the received specular to the
scattered power. The lower bound can be expressed approximately as

Tun(hCR) 1 " 207

o’ T 2m

o 2
E[e(n)] = ij H(e*)o? dw = lim | oo,
oy

a—wcosfy — 21 —wq 20- TS + o (K + 1) \/ﬁ

lim 1 f w0 20° 0 dw N lim fd Koo \Jw, - 8w —wdcosﬁo)dw
1 — 1 — =~
rosott 200 2T + 0K +1) /) st 2T KT o — 0 S — w,c0860,)

2§SNR _(K +1)wd )
VAlow — (K +1) 0]
m(K + 1)/4 o — (K +1)’w)

7 Al — (K +1) 70 —SZSNRarctan(

(17)

3 Lower Bound on BER of Diversity System
The PDF of the output SNR vy of a maximal ratio (MR) combiner with Gaussian distributed weighting errors

has been derived by Gans'"', and is given by

(1 Z)L—] (_ /F) L-1 _ 2 n
-p ;xp Y n:o(Li’ll)[(l—szz)F] - (18)

ply) =

where

I'=E[£] (19)
the instantaneous SNR per branch is given by &, and p is the correlation between the actual complex channel
gains a(k) and their estimates &(k). The squared correlation is defined as'”!

) A K
e NV (20)
El[a" (k)a(k) ]
After some further manipulations, Eq. (20) can be rewritten as
2
o 1 1
P o +o l+o/a 1+7y, @1

where vy is normalized mean squared channel estimation error. When the lower bounds on vy, are applied to Eq.
(21), the maximal squared correlations can be obtained.

Using the form of the PDF of the output SNR in Eq. (18), the BER for a particular modulation scheme can
be expressed as'”
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Po= S W) [ $0f(y9)dy (22)

where ¢(7y) is the BER for different modulation schemes dependent on y, and W(s) is the weighting coefficient,
which is not a function of y, and it can be given by

W(s) =(€:11)(1 —p?)Eip D (23)

f,(y, s) is the PDF of the output SNR of an ideal s-branch MR combiner and can be written as
_ e VT ”
£,Cys ) 4L(s—1)!1“ (24)

4 Numerical Results

In this section we will indicate the effect of Gaussian errors in the weighting factors on the BER performance
for binary phase shift keying (BPSK) ' of a six-branch combiner.

Fig. 1(a), Fig.2(a) and Fig. 3(a) illustrate the lower bounds on BER surfaces under different fading power
spectra as a function of the SNR of branch and the SNR of channel estimation, where f; takes the value 185 Hz,
T and K are assumed to be 66. 66 s and 10, respectively.

The numerical results of the lower bounds on the BER performance as a function of the maximum Doppler
frequency and the SNR of branch are shown in Fig. 1(b), Fig.2(b) and Fig. 3(b) for different fading power
spectra, where the SNR of channel estimation takes the value 5 dB, T is assumed to be 66. 66 ps and K =10.

In all these cases, the lower surfaces denote the BER performance of ideal six-branch MR combiners. It can
be noted from all the plots, the BER performances of ideal MR combiners are the lower bounds on the BER per-
formances of non-ideal MR combiners which deteriorate as the maximum Doppler frequency increases or the SNR
of channel estimation decreases. It also can be noted that the BER performance in the fading channel with U-
shaped power spectra outperforms the performance for flat power spectra and when there exists a specular compo-
nent, better BER performance can be obtained.

(a) (b)

(a) (b)
Fig.2 BER performance for U-shaped power spectrum. (a) Effect of channel estimate SNR; (b) Effect of maximum Doppler frequency
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BER

Fig.3 BER performance for U-shaped plus specular component. (a)Effect of channel estimate SNR; (b)Effect of maximum Doppler frequency

5 Conclusion

In this paper, the exact closed-form expressions of the lower bounds on channel estimate for different channel
Doppler spectra have been derived. The lower bound on BER for maximal ratio combining with Gaussian distribu-
ted weighting errors on independent and identically distributed Rayleigh fading channels has also been obtained.
These expressions have presented criteria for us to access the system performance and compare the gain in BER
performance for any of the analyzed schemes in the presence of a realistic environment.

Appendix A

In this appendix we derive the power spectra of the channel estimate and the estimation error.

The cost function is defined as mean-square error and can be expressed as

Juin(h(K)) =E[ [ a(n) —é(n) |?] (Al)
Using Eq. (4) we can write the cost function in Eq. (25) as
Jua(h(10) = Ro(0) =2Re{ T hORL0 ) + 3 3 (O Ry =) =3[ S.(e)do -

k=-0on=-wx

2 z u o I v v 5 v oy jok-n
el T [ S.eertaolis B X B Wh [ Su(e e o =

k=-0on=-x
L Y dey — 2 T i o A joy |2 jo
2] Sl do = Re{[" H ()8, (") o] THE) [PSu(e)do (A2)

For the typical Doppler power spectra which are normally real symmetry function, Eq. (A2) can be simplified in-
to

1" 28, (e" | S..(e”)7 -
Ttk =5 {1 20l () [Fl ] s () Lo =
T Sex(€") Sxx(e)
- S jo S jo _ S jo 2
LJ aa(e ) XX(e ) [ aa(e )] da) (A3)
2m) . Syx(€")
Substituting Eq. (5) into Eq. (A3) yields
1 (" S.(e")S,(e")
Join(H(K)) = — D . A4
w0 =30] 5o +5.e% Y
Furthermore, the average power of the channel estimate can be obtained as
Lr S
E[l |a 1 =0 = Ju(h(k) = — : A5
[latn 11 = 0" = (htk) = 5[ S (o 45 (AS)

Appendix B
In this appendix, we describe the important intermediate steps involved in the transformation of Eq. (10) into

Eq. (11).
When the filter tap N is odd, the first term on the right-hand side of Eq. (10) can be restated as
B} P, 1"tRy Pyt P
PR P = G L] (BI1)

P 7,
By using the lemma of matrix inversion, the middle term on the right-hand side of Eq. (B1) can be expressed as

F'ins1y2 Fins1y2



384 Sheng Bin, and You Xiaohu

(B2)

where
szz(ro_PTRzglP)il’ C12: _Rz;lpczz’ C21= —C22PTR,\;1, 011=R§1_C12PTR1;1 (B3)
And, C,, can be manipulated into

HTp-1 Py -1 1 1 51 5 1 57 |
= - =—4+— R,-P—P —=
Cp=(r,-P'R;'P) m+%P(N - ) P
%P%R;+R;Pob-FR;in”Pm;UP:——éejf (B4)
Ty r,—-P R, P
Inserting Eq. (B3) into Eq. (20) gives
PN f RN P o PN H -1 H -1 3 DT -1
[V(Nn)/z] [PT Vo] [F(N+1)/2] =Py Ry Pyt Py Ry PCP Ry Py -
r(N+1)/2C22PTR1\;l P, - r(N+1)/2C22P$ R}\;I P +r?N+1)/2 Cy (B5)
Combining Eq. (9) and Eq. (B1), we finally obtain
Jﬁm _‘]}n\{li;l =PS Rl\;l PszPTRA;l P, _r(N+1)/2C22PTR1\71 P, _7<N+1);2C3212)2 Rl\_/l P +r?1v+1)/2 Cy =
_ _ r -w, P
C22(r(N+1)/2_PﬁRJ\;lP)(r(N-H)/Z_PTRI\;lPN) :( S o ) (B6)

ro-PR,' P
The transformation of Eq. (10) into Eq. (11) is also the same for even N and the final result can be derived

as

vt _ (v =Wou P)°

‘IN _Jmin - pPTp-1 7
r,—P"R;' P

min

(B7)
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