Journal of Southeast University (English Edition)

Vol.21, No.4, pp.419 —-426 Dec. 2005

ISSN 1003—7985

Load balancing framework for actively replicated servers

Wang Yun

Wang Junling

(Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract: This paper focuses on solving a problem of improving system robustness and the efficiency of a

distributed system at the same time. Fault tolerance with active replication and load balancing techniques are

used. The pros and cons of both techniques are analyzed, and a novel load balancing framework for fault

tolerant systems with active replication is presented. Hierarchical architecture is described in detail. The

framework can dynamically adjust fault tolerant groups and their memberships with respect to system loads.

Three potential task scheduler group selection methods are proposed and simulation tests are made. Further

analysis of test data is done and helpful observations for system design are also pointed out, including effects of

task arrival intensity and task set size, relationship between total task execution time and single task execution

time.

Key words: load balancing; fault tolerance; framework; task scheduler group

Computer software and hardware are not so robust
that their mistakes may lead to system collapse. Nowa-
days, the demands of applications for better perform-
ance are stronger. Hence, how to enhance system ro-
bustness and high efficiency is a hot point.

Fault tolerance (FT) with active replication in
asynchronous distributed systems is good at enhancing
system robustness and improving reply performance'" .
Critical parts in a system are replicated and replicas
comprise an FT group. The copies of the critical server
run concurrently. All of them receive the requests from
clients, execute the corresponding operations, and send
back the responses. When a failure occurs on one repli-
ca detected by the failure detector, the failure is masked
and the computation continues as long as there are
enough operational replicas in a group. This replication
style assumes a deterministic behavior on these replicas
and requires an atomic broadcast mechanism to main-
tain consistency. If there are not too many replicas that
fail simultaneously, a system is able to survive. The
drawback of this technique is that due to replicas in a
system, to a certain extent, resource waste exists in a
system during fail-free periods.

Load balancing (LB) protects a server from over-
load. It is good at improving request reply performance
while it is able to provide fault tolerance in certain sit-

Received 2005-06-06.

Foundation items: The National Natural Science Foundation of China
(No. 60273038) ; the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry; Program for New
Century Excellent Talents in University, MOE (No. NCEF-04-0478) .
Biography: Wang Yun (1967—), female, doctor, professor, yunwang@

seu. edu. cn.

uations, for example, migrating a request dynamically.
Therefore, fault tolerance with active replication and
load balancing techniques are complementary. The
marriage of fault tolerance and load balancing in an
asynchronous distributed environment is a good way to
maintain high system performance and robustness at the
same time. Such a technique is useful in the applica-
tions of Web server, weather forecast computing, etc.

The main contribution of this paper is two-fold.
One is to propose a load balancing framework for fault
tolerance with active replication. The framework is able
to dynamically adjust FT groups and their memberships
due to system loads. An FT group may change its re-
dundancy due to members joining or leaving. The num-
ber of FT groups may also be increased or decreased
due to heavy or light system task load. The framework
is good at scalability and load adaptation. The other is
to manifest the effects of task arrival intensity and task
set size on performance, and the relationship between
total task execution time and single task execution
time.

1 Related Work

In asynchronous distributed systems, fault toler-
ance problems with active replication are deduced to a
Consensus problem'”'. FLP impossibility in 1985,
shows that it is impossible to distinguish a slow proces-
sor from a crashed processor in an asynchronous envi-

ronment"*!

. Chandra and Toueg pointed out that the
Consensus problem is solvable in an asynchronous dis-
tributed environment if processors are equipped with

failure detectors at least satisfying <>S properties'” .

420 Wang Yun, and Wang Junling

The Chandra-Toueg Consensus protocol'” shows the
steps and details to solve the Consensus problem theo-
retically. There are also some fault tolerant systems,
such as the SIFT system'*!, the State Machine'”, the
Isis (and later Horus) system'®”’, the Psync system'™,
etc. These systems are not able to adjust the systems in
terms of requested task loads. Computation resources in
a system are not fully used in the case of fail-free.

Research on load balancing mainly focuses on
load balancing strategies, such as static and dynamic
load balancing strategies'” ', Static load balancing
uses pre-defined strategies. Task scheduling is inde-
pendent of the current system load situation. Dynamic
load balancing makes decisions on shifting tasks based
on a system’s real workload status. It can gain better
efficiency, but it is more complex. Usually, single-point
fail problem of scheduler node or processor node still
exists. Task migration is a new trend in load balancing
in order to provide certain fault tolerance. But single-
point fail problem is not solved if the scheduler node
crashes. The capability of providing fault tolerance is
limited. The work presented in Ref. [13] adds a load
balancing service to TAO, which conforms to CORBA
specifications.

There is little literature on the combination of
fault tolerance and load balancing due to the complexi-
ty of the problem itself. In Ref. [14], two front ends
(FE) receive client requests, and these requests are
transferred to the back ends of query ends (QE). Ref.
[14] discussed five fault tolerant schemes between FE
and QE and also strategies of load balancing.

The DCG in Southeast University implements a
fault tolerant prototype with active replication!™'".
Considering the features of load balancing, a novel
framework of fault tolerance and load balancing is pro-
posed. Further, three ways to select task scheduler
group are given out. Our framework is basically differ-
ent from those schemes in Ref. [14]. In our frame-
work, fault tolerance is provided by active replication.
All the requests are executed by a group. Tasks are
scheduled by a group. A group is a basic processing
unit. Regarding the schemes in Ref. [14], the main idea
of fault tolerance is to migrate a server in case of fail-
ure. Our framework is more general. Five schemes are
particular instantiations of our framework.

To our best knowledge, no literature has been
published on this specific topic.

2 Problem

Active replication leads us to a way to enhance
FT. The main idea of fault tolerance with active repli-

cation is to let more than one replica process one client
request. Meanwhile, the principle of LB is to reduce the
number of client requests on one server. These two
techniques exert efforts on different dimensions. So,
when a system encounters requirements of both FT and
LB, the system needs to keep a balance between them.
If we regard the efficiency function of FT and LB as A
and B respectively, the problem is to find out the turn-
ing point of a joint function of A and B for its maxi-
mum value.

The difficulties involved in solving the problem
are rooted in the differences between two techniques.
Besides the contrast of the main technique idea men-
tioned before, the other key difference is that the global
load information is not necessary for FT, but it is criti-
cal for LB. Therefore, any solution needs to answer at
least two questions. The first one is what is a good re-
dundancy for one server. Too many replicas in a server
group may lead to heavier communication and other
extra costs for each replica, while too few replicas in a
group may violate FT. The second one is how to obtain
global dynamic load information of server groups based
on FT mechanisms.

This paper will illustrate our framework and show
our answers to these two questions.

3 An LB Framework with FT

3.1 Assumptions

An asynchronous distributed system is composed
of a set of pre-defined processors 2= {p,, p,, ..., P, }
(i=1,2,...,n). All the processors are linked, and com-
munications among processors depend on message
transfer. There is neither upper bound for a message
transfer, nor upper bound for a step execution on a pro-
cessor. A processor is a correct processor if it works ac-
cording to its specifications. Otherwise, a processor is a
faulty processor. The system follows a fail/stop frame-
work, which means any faulty processor will not partic-
ipate in system computing any more when it crashes. A
majority of processors in (2 are correct processors. Spe-
cifically, there are more than | n/2 | correct proces-
sors.

Every processor p, is equipped with a local failure
detector D; that satisfies <S, which holds strong com-
pleteness and eventually weak accuracy properties.

We further assume that tasks ¢,, t,, ..., 1, (m=0)
in an asynchronous distributed system are independent
and non-preemptive. Every task is presented by a 5-
tuple, i. e., ¢, = { cpu,, mem,, criticallevel,, starttime,,
endtime,), where the parameters stand for CPU occu-
pation rate, predicated use of memory, task importance,

Load balancing framework for actively replicated servers 421

start time and end time from left to right respectively.
A task scheduling module applies static LB strategies.
3.2 Framework architecture

The framework architecture is hierarchical. Three
layers, namely network infrastructure (NI) layer, FT
layer and LB layer are from bottom to top, as shown in
Fig. 1. The NI layer is to provide communication serv-
ices for the upper layers. It can be a LAN or Internet,
for example. The FT layer includes group membership
and consistency management modules.

(1) Request |(2) Response

Server group

LB layer Task scheduling __] -)»manager
+ 3} Group
FT layer V

mbershi
FT consensus managerﬁ Lme P

-
* Network

communication

NI layer

Network communication

Fig.1 Framework architecture

The LB layer covers server group management
and task scheduling modules. We should point out that
server group management involves manipulating the
operations of joining, leaving, deletion and so on by the
unit of a group rather than by a member. It is totally
different from group membership in the FT layer. This
paper pays more attention to the LB layer.

3.3 Server group management

All the groups supporting the FT and LB services
form a server group. Server group management con-
cerns the creation, split, mergence and deletion of FT
groups based on the operation unit of an FT group. Op-
erations of group split and group mergence depend on
system loads.

(D Group creation: Initially, a server group has
one group member.

@) Group split: When the server group manager
decides to split group g, to form new [(1 <[/<n)
groups g,,, &1» ---» &y~ The new group g,, will contin-
ue the work remaining by the former group g,, and
other new groups g,,, ..., g, Will get their transferred
states and accept orders from the task scheduler.

3 Group mergence: When the server group man-
ager decides to merge k(k >1) groups, namely g,, g,,
.--» & with each group of m, members, to be a new
group g,, the former g, is selected to be the base
group, and other groups g,, ..., g, join g,. Before suc-
cessful mergence, the groups g,, ..., g, will not accept
any new requests. After they finish their tasks and join

k
a new group, the new group has 2 m, members. At the
=1
same time, the former g, will tra)nsfer states to all new
members.

@) Group deletion: If all the members in a group
crash or a group joins a new group, the group will be
deleted.

3.4 Task scheduling module

The aim of task scheduling is to adjust task load
dynamically in terms of FT groups. If system perform-
ance decreases, or if there are too many tasks in an FT
group, or if response time is longer than threshold v,
the task scheduler may make a decision to split groups.
Meanwhile, if system load is rather light, or there are
minimum replicas in an FT group corresponding to a
critical service, the task scheduler may decide to merge
groups. Redundancy of an FT group is related to the
threshold values set in a specific system.

The task scheduler undertakes all the responsibili-
ties of the task scheduling module. In a non-FT sys-
tem, there is always only one task scheduler. This may
lead to a single-point failure in a system. In our frame-
work, there is a task scheduler group running in a sys-
tem. From the point of view of client applications, the
task scheduler group is transparent. There is no differ-
ence from single task scheduler. Then we face a new
question: how to select or form a task scheduler group?
We will answer this question in section 4.

3.5 A typical scenario

Referring to Fig. 1, a typical scenario for a task is
as follows. A task ¢ sends a request to a system by in-
terface (1); the task scheduling module inquires the
current server group status by interface (5); server
group status is maintained by interface (7); the task
scheduler chooses a group and makes a decision to
transfer the request to the group by interface (3); mem-
bers of a server group communicate with each other by
interface (4) and (8); group membership information is
transferred by interface (6); request results are returned
by interface (2).

4 Task Scheduler Group Selections

The task scheduler group (TSG) is a special FT
group. It is responsible for allocating client requests,
coordinating redundancy of FT groups and adjusting
load balance. In this section three ways are proposed
for TSG selection. The difficulty in selecting a suitable
TSG depends on the TSG being capable of gaining
global group load information in order to make appro-
priate decisions for tasks. In an asynchronous system, it
is rather difficult to achieve this.

422 Wang Yun, and Wang Junling

4.1 Selection 1—Centralized control fashion

In centralized control fashion, one of the FT
groups, namely g,, is separated to be the TSG as shown
in Fig. 2. Clients send their requests to the TSG. The
TSG allocates requests to g,, ..., g, respectively. After
request execution, replies are delivered to the TSG. Cli-

ents receive replies by the TSG.

[
w

| Execution reply
/
Request__ O \ |
O< O |
Client ~Response” \ / |
N O 4 ’ | :
~ o o 7 |
TSG(g1) '
: 81
LR

Fig.2 Centralized control fashion

4.2 Selection 2—Round-robin fashion

FT groups act as the TSG in this fashion in turn.
An FT group’ s turn is simply calculated by (#round
mod #group) . Each FT group has a continuous integer
as its group number. If the result of (#round mod #
group) equals a group number, the group becomes the
current TSG. The initial value of #round is 0. It increa-
ses by 1 whenever the TSG is changed once. The value
of #group equals members in the server group. If g, is
the current TSG, clients send their requests to g,. g, is
in charge of allocation as shown in Fig. 3. If the TSG
does not assign tasks to itself, we denote it as selection
2-1. Otherwise, it is selection 2-2.

e — o= ——
e
: Task allocatlon

|

- O\ roup load message
Request / Executlon
OO
Client Response | \ = /

Group load] message

Fig.3 Round-robin fashion

4.3 Selection 3—Inter-group fashion

The TSG in selection 3 is not a simple FT group.
The TSG is composed of representatives of all FT
groups in the server group. That is to say, a member of
each group is selected as group representative to be a
member of the TSG. If a member of the TSG fails, a
new member, belonging to the same group as the
crashed one, is selected and substitutes the former one.

The work fashion is shown in Fig. 4.

' O
O/ ! TSG b' &
: \ ! \ l
Client Respolnse \ N\ O
- —

| \ I\

| J Q/

| FT - 81

|

I

Fig.4 Inter-group fashion

4.4 Comparisons of selections

In order to evaluate these selections, we first dis-
cuss some criteria.

1) Centralized control and decentralized control.
Centralized control refers to a way that tasks are sched-
uled by one pre-defined and fixed processor; decentral-
ized control is a way to schedule tasks by multiple pro-
CEessors.

2) Communication costs. This refers to how many
messages are needed before a task is executed after it is
received by the task service provider.

3) Total execution time for a task set.

4) Server fairness. Server fairness is good if the
number of tasks executed by each server is almost the
same. Otherwise, server fairness is bad.

5) Mean server throughput. This refers to mean
tasks executed by a server in a unit time.

Secondly, we give some qualitative comparisons
for these selections. Quantitative comparisons will be
presented in section 5.

1) Selection 1 keeps the advantages of high
throughput and simple control mechanism, and it avoids
single-point failure. But the TSG may be a bottleneck in
system performance. System load distribution is centrally
controlled.

2) Selection 2 is good at multiplexing a group as
the TSG. No more central control is needed. It is a de-
centralized structure, which is able to solve a perform-
ance bottleneck. Extra load messages need to ex-
change among groups as a cost. What’ s more, it is
more complex to select the TSG in the case of group
collisions.

3) Each member in TSG in the selection 3 has
folded roles. It is a member of a group, and a member
of the TSG. The task scheduler group is able to bene-
fit from such folded role members. When the TSG re-
ceives client requests, it is not necessary to transfer re-

Load balancing framework for actively replicated servers 423

quests to certain group by the TSG, nor does the TSG
deliver replies to clients with extra actions. A group’ s
task load is brought to the TSG by the group’ s TSG
member. It is able to achieve rather high performance.
The drawback of the fashion is that the TSG manage-
ment becomes complex.

5 Simulation Tests

In order to check the aforementioned analysis,
simulation tests for selection methods are made.
5.1 Test environment

We assume that a system is composed of four FT
groups. Each FT group has the same formation. Fur-
ther, we assume that an FT service with active replica-
tion exists. Their effects will not be considered in the
tests. Only costs due to load balancing are under con-
sideration.

The TSG in selection 1 and selection 2-1 does
not assign tasks for itself, while in selection 2-2, the
TSG regards itself the same as other FT groups. For
simplicity, we implement an FT group by a thread.
Each task executes for 1 min. The strategy for task as-
signment is shortest-queue-first.

In simulation tests, all the FT groups run in one
PC machine. The PC runs Windows XP. Its CPU is P4
1.8 G with a RAM of 256 MB. Programs are written
with Visual C ++6. 0.

Communication costs are considered in selection
2. We assume that a network transmission delay is not
longer than 5% of a task execution time, that is to
say, 3 s. Network transmission delay is produced by a
random function.

5.2 Test result and analysis
5.2.1 Performance of task arrival intensity

We observe mean server throughput in the condi-
tions of determined single task execution time (1
min), task set size (including 6 000 tasks) and run-
ning period (250 min) and variable task arrival inten-
sity (task/min). T1, T2, T3 and T4 in the following
tables stand for thread 1, thread 2, thread 3 and thread
4, respectively.

Selection 1 Centralized control fashion

From Tab. 1, we observe that server fairness is
rather poor in the case of lower task arrival intensity.
This is because a server has completed its task before
a new task arrives and hence the new task goes to the
same server. It is not very difficult to improve this by
accounting tasks assigned to a server. Server fairness
is good with high task arrival intensity. We also notice
that mean server throughput reaches its saturation state
when task arrival intensity is about two times the

number of servers in a system.
Tab.1 Mean server throughput in selection 1
Throughput/

Tasks arrival Number of tasks executed

per minute T1 T2 T3 (task- min~")
2 249 189 1 1. 756
3 249 243 130 2.488
4 249 248 247 2.976
5 249 249 248 2.984
6 249 248 248 2.984
7 249 248 248 2.980
8 249 247 248 2.976
9 249 248 249 2.984
10 249 248 248 2.980

Selection 2 Round-robin fashion

Selection 2-1 The TSG does not assign tasks to
itself

From Tab. 2, we notice that in server fairness, se-
lection 2-1 is worse than selection 1. In selection 2-1,
there are four servers and mean server throughput is
only near two. Two reasons lead to this phenomenon.
One is that the TSG does not assign tasks for itself.
This may waste some computing resources. The other
is that the TSG needs to communicate with all the oth-
er servers in order to obtain current load distribution.
A system has to pay extra costs for this.

Tab.2 Mean server throughput in selection 2-1

Throughput/

Tasks arrival Number of tasks executed

per minute Tl ™ T3 T4 (task- min~!)
2 189 91 71 52 1. 612
3 181 137 105 98 2.084
4 182 147 103 98 2.120
5 194 147 89 104 2.136
6 190 140 100 91 2. 084
7 188 145 103 90 2. 104
8 180 148 102 100 2.120
9 180 140 100 95 2. 060
10 175 145 99 97 2. 064

Selection 2-2 TSG assigns task for itself
From Tab. 3, it is obvious that mean server
throughput in selection 2-2 is better than that in selec-
tion 2-1 due to different strategies.
Tab.3 Mean server throughput in selection 2-2

Tasks arrival Number of tasks executed Throughput/
per minute Tl T2 T3 T4 (task- min~")
2 188 157 89 4 1.752
3 185 187 158 82 2.448
4 186 200 189 185 3.040
5 190 202 186 190 3.072
6 205 185 192 184 3. 064
7 199 187 179 191 3.024
8 196 201 191 190 3.112
9 202 188 192 182 3. 056
10 191 194 189 196 3. 080

Selection 3 Inter-group fashion
From Tab. 4, we observe that mean server
throughput is greatly improved in selection 3. It is

nearly the extreme value of four with four servers in a

424 Wang Yun, and Wang Junling

system. The explanation for this is that, on the one
hand, all the servers make contributions to task execu-
tion. On the other hand, TSG members directly obtain
the information of task load distribution for servers.
No extra communication is needed.

Tab.4 Mean server throughput in selection 3

Tasks arrival Number of tasks executed Throughput/
per minute Tl T2 T3 T4 (task - min ')
2 249 185 0 0 1.752
3 249 241 128 1 2.476
4 248 248 211 63 3.080
5 248 248 244 178 3.676
6 249 248 248 246 3.964
7 249 247 248 248 3. 968
8 248 248 246 246 3.952
9 249 248 247 248 3.968
10 249 248 248 248 3.972

We show the relationships of all selections on
mean server throughput with Fig. 5. From Fig. 5, it
can be seen that the common features for all the selec-
tions are as follows : (I) Server fairness goes better
when task arrival intensity goes higher; (2) Mean serv-
er throughput reaches its peak when task arrival inten-
sity is about two times the server numbers in a sys-
tem. Selection 3 is the best among all the sections on
mean server throughput.

—®—Selection 1 ~ —— Selection 2-1

S 51 —&—Selection 2-2 —— Selection 3
=
=
£
o
&
= 7o 5 10 15

Task arrival intensity/(task*min~!)

Fig.5 Mean server throughput comparison for all selections

5.2.2 Performance of task set size

We observe the relations between total task exe-
cution time with task set size in the conditions of de-
termined single task execution time (1 min) and task
arrival intensity (6 task/min).

From Fig. 6, we notice that for all selections total
task execution time goes up while task set size increa-
ses, especially at the linear rate. Among all the selec-
tions, selection 2-1 goes up at the fastest speed while
selection 3 is the slowest one. Total task execution
time in selection 3 is less than about 25% of that in
selection 2-1. Total task execution time of selection 2-
2 and selection 1 is similar.

It shows that we are able to calculate perform-
ance thresholds for a system if server capabilities are
clear.

—4@—Selection 1 ~ ——Selection 2-1
1000 - —A—Selection 2-2 —>— Selection 3

Total task execution
time/min

L ! L J

500 1000 1500 2000
Task set size/task

Fig. 6 Total task execution time with variable task set

800
600
400
200
0

0

size for all the selections

5.2.3 Performance of single task execution time

We test and observe the relationships between to-
tal task execution time (min) and single task execu-
tion time in the conditions of determined task arrival
intensity (6 task/min) and task set size (1 200
tasks) .

Selection 1 Centralized control fashion

Tab. 5 shows that with the extension of single
task execution time, server fairness is improved and
total task execution time increases slowly. The costs
due to task scheduling decreases from 29.22% (in the
case of single task execution time of 10 s) to 5. 16%
(in the case of single task execution time of 80 s).

Tab.5 Total task execution time with varied single task
execution time in selection 1

Execution time/min Number of tasks executed

Single task Total task T1 T2 T3
10 282.583 1045 138 17
20 291. 667 705 429 66
30 297.333 548 421 231
40 282.233 421 407 372
50 335.483 401 400 399
60 401.917 400 400 400
70 469. 35 401 400 399
80 536. 1 401 400 399

Selection 2 Round-robin fashion

Tab. 6 and Tab. 7 show that total task execution
time does not go up rapidly until single task execution
time reaches 40 s. This is consistent in the situation of
four servers and task intensity of one task arrival
every 10 s. It means that in this situation, a system
goes to its saturation state, i. e., a server finishes a
task execution as soon as a new task arrives. In the as-
pect of total task execution time, selection 2-1 is not
so good as selection 1. Selection 2-2 is better than se-
lection 2-1.

Selection 3 Inter-group fashion

Tab. 8 shows total task execution time with varied
single task execution time in selection 3. Different selec-
tions are compared in the aspect of total task execution
time with varied single task execution time in Fig. 7.

Load balancing framework for actively replicated servers 425

Tab.6 Total task execution time with varied single
task execution time in selection 2-1

Execution time/min Number of tasks executed

Single task Total task T1 T2 T3 T4
10 289 825 171 120 57
20 409. 417 822 178 120 80
30 523.917 696 234 141 129
40 562. 983 520 288 198 194
50 608. 717 499 284 210 207
60 662. 617 463 300 218 219
70 726.217 452 316 215 217
80 852.733 440 317 221 222

Tab.7 Total task execution time with varied single
task execution time in selection 2-2

Execution time/min Number of tasks executed

Single task Total task T1 T2 T3 T4
10 282.917 661 397 127 15
20 290. 083 537 355 242 66
30 287.233 398 352 286 164
40 287.75 315 310 310 265
50 329.316 319 295 292 294
60 395.25 311 289 315 285
70 458.833 296 304 292 308
80 516.25 296 303 307 294

Tab.8 Total task execution time with varied single
task execution time in selection 3

Execution time/min Number of tasks executed

Single Task Total task T1 T2 T3 T4
10 282.083 939 252 9 0
20 280. 4 615 410 174
30 282.917 526 408 257 9
40 281.4 419 394 333 54
50 292.5 340 336 320 204
60 302. 433 301 301 300 298
70 352.333 301 301 300 298
80 402. 583 301 300 300 299

51000
&
g 800
-2 —— Selection 1
£ 600 | —A— Selection 2-2
‘g —— Selection 2-1
g 400 —>¢— Selection 3
-
2 00
E
EO 0 1]

0 50 100

Single task execution time/s
Fig.7 Relations between total task execution time and
single task execution time

Fig. 7 shows the trend that total task execution
time goes up with the increase of single task execution
time. All the curves go up at different speeds. A single
task execution time of 40 s is a turning point in system
performance in the specific system configuration. Of
course, the specific value of the turning point is relat-
ed to a specific system. In the aspect of total task exe-

cution time, selection 3 is about 80% of selection 2-2
and 47. 2% of selection 2-1.
5.3 Analysis summary

(D The performance of selection 3 is the best,
then that of selection 1 followed by selection 2-2. Per-
formance of selection 2-1 is the worst.

(2 The main reason for the poor performance of
selection 2-1 is that extra communication is needed in
order to obtain a current load distribution of fault tol-
erant groups. In fact, test data show that this extra cost
is possible to compensate for. For example, if a new
strategy is applied, such as selection 2-2, the perform-
ance is obviously improved and may go to the level of
that of selection 1.

3 Mean server throughput in all the selections
follows the trend of task intensity. It reaches a satura-
tion state when task intensity reaches a threshold. Usu-
ally, the threshold is two times the number of servers
in a system.

(@ Total task execution time has a linear relation
to single task execution time. Turning points exist in
the system performance. These turning points are help-
ful for designing distributed systems.

6 Conclusion

This paper analyzes the pros and cons of both
techniques of fault tolerance with active replication
and load balancing. A novel framework of load balan-
cing based on fault tolerance with active replication is
presented. Three selection methods for task scheduler
groups are addressed and compared. The framework is
for independent and non-preemptive tasks and applies
static load balance strategies.

In the future we will implement a prototype of
the framework and quantificationally analyze group
redundancy, and we will also extend the framework
for preemptive tasks and dynamic load balance strate-
gies.

References

[1] Polledna S. Fault tolerant real-time systems: the problem
of replica determinism [M]. Boston: Kluwer Academic
Publishers, 1995.

[2] Chandra J, Toueg S. Unreliable failure detectors for relia-
ble distributed systems [J]. Journal of the ACM, 1996, 43
(2):225-267.

[3] Fischer M J, Lynch N A, Paterson M S. Impossibility of
distributed consensus with one faulty process [J]. Journal
of the ACM, 1985,32(2):374 —382.

[4] Wensley J H, Lamport L, Goldberg J, et al. SIFT: design

426

Wang Yun, and Wang Junling

[5]

(6]

(7]

(8]

(9]

and analysis of a fault-tolerant computer for aircraft con-
trol [J]. Proceedings of the IEEE, 1978, 66(10): 1240 —
1255.

Schneider F B. Implementing fault-tolerant services using
the state machine approach: a tutorial [J]. ACM Compu-
ting Surveys, 1990,22(4):299 —319.

Kenneth B, Thomas J, Frank S. ISIS: a distributed pro-
gramming environment, version 2. l—user’ s guide and
reference manual [EB/OL].
edu/Info/Projects/ISIS/ISISpapers. html.
05.

Renesse R, Birman K, Maffeis S. Horus: a flexible group

http: //www. cs. cornell.
1987,/2005-06-

communication system [J]. Communications of the ACM,
1996,39(4):76 —83.

Peterson L L, Bucholz N C, Schlichting R D. Preserving
and using context information in interprocess communica-
tion [J]. ACM Transactions on Computer Systems, 1989,7
(3):217 —246.

Kanmeda H, Li J, Kim C, et al. Optimal load balancing in
distributed computer systems [M]. London: Springer-Ver-
lag, 1997.

[10] Zhou S. A trace-driven simulation study of dynamic load

balancing [J]. IEEE Transactions on Software Engineer-
ing, 1988, 14(9):1327 —1341.

[11]

[12]

[13]

[14]

[15]

[16]

Kostin A E, Aybay I, Oz G. A randomized contention-
based load-balancing protocol for a distributed multiserv-
er queuing system [J]. IEEE Transactions on Parallel
and Distributed Systems,2000,11(12): 1252 —1273.
Eager D, Lazowska E, Zahorjan J. The limited perform-
ance benefits of migrating active processes for load sha-
ring [J]. ACM SIGMETRICS Performance Evaluation
Review, 1988,16(1):63 —72.

Othman O, O’ Ryan C, Schmidt D. The design of an
adaptive corba load balancing service [EB/OL]. http: //
www. cs. wustl. edu/ ~ schmidt/PDF/load_ balancing2.
pdf. 2001/2005-06-05.

Friedman R, Mosse D. Load balancing frameworks for
high-throughput distributed fault-tolerant servers [J].
Journal of Parallel and Distributed Computing, 1999, 59
(3):475 —488.

Wang Y. Active leave behavior of members in a fault-tol-
erant group [J]. Science in China Ser F Information Sci-
ences, 2004, 47(2):260 —272.

Wang Y, Wang J L. A novel load balancing framework
for active replicated servers in asynchronous distributed
systems [A]. In: The 16th IASTED International Confer-
ence on Parallel and Distributed Computing and Systems
[C]. Cambridge, 2004. 298 —303.

— M @) £ 30 & #I ik 555 B 2 T EIES
EXTY
(RaxFH AT E 1L, &R 210096)

- -
E =

WEMRBETES>HAXZATPRNRS
B KA R

BOAER T T IZAER M B R EH. ZIER

HPHHA, 2T X2 HHARMGEE A S 4, BT — AT 23 E 4%
RALBARE A AR K, B &

5 AR T A B AT AR FA. AT R T 2 A S

B BT

S IR R R G P AR ARG AN FA

BSAET R A AN AT 3 AR SRR A6 7 ik, JR AT T A7 ARl AL x4 SR

R M AL LB 3K 58 B AES B R D LB EAAEL-IAT I 18] 5 AR - £ AT) 89 % A
S A BT oA X A it

b, XM LT
%lﬂﬁﬁ%%;ﬁ]
FE 5K S: TP391

AER SR AN

#HAFT

