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Abstract: A novel method is produced to evaluate the energy of the Catmull-Clark subdivision surface including

extraordinary points in the control mesh. A closed-form analytic formula for thin plate energy of the Catmull-

Clark subdivision surface of arbitrary topology is derived through translating the Catmull-Clark subdivision

surface into bi-cubic B-spline surface pieces. Using this method, both the membrane energy and the thin plate

energy can be evaluated without requiring recursive subdivision. Therefore, it is more efficient and more

accurate than the existing methods for calculating the energy of the Catmull-Clark subdivision surface with

arbitrary topology. The example of surface fairing demonstrates that this method is efficient and successful for

evaluating the energy of subdivision surfaces.
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Energy of subdivision surfaces has been widely
used in geometrics, computer graphics, physics-based
dynamic modeling and scientific visualization'"'. How-
ever the existing methods have many defects. First, en-
ergy evaluations of patch subdivision surfaces with an
extraordinary point needs recursive subdivision and nu-
merical integrals. Secondly, they obtain only approxi-
mate results of energy of patches with an extraordinary
point'” . The aim of this paper is to solve these ques-
tions.

There are many schemes to express the energy of
surface, such as elastically deformable energy!”’, data-
dependent energy'*' and so on. In this paper, the surface
energy is composed of a membrane energy and a thin
plate energy'”’. This form energy has clear physics
meanings.

E =puE, +¢E, (1)
where u and ¢ are the characteristic coefficients of the
material, usually p and ¢ are all equal to 1,
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Although there are many surface subdivision

schemes, the Catmull-Clark subdivision'®

is a widely
used subdivision scheme. The energy evaluation of the
Catmull-Clark subdivision surface is analyzed in this
paper. Our method may easily be adapted for compu-

ting the energy of other subdivision schemes.

1 Catmull-Clark Surfaces

Catmull and Clark have shown that the rules ex-
pressed for the cubic B-spline subdivision not only
work for arbitrary rectangular meshes, but also can be
extended to meshes with arbitrary topology.

The number of edges adjacent to a vertex is called
its valence. A vertex whose valence is equal to four is
called an ordinary vertex; otherwise, it is called an ex-
traordinary vertex. The new control mesh of a subdivi-
sion surface is reconnected by the following new points
by subdividing the initial mesh'”’.

e Face point

The new face points are generated from each face
of the initial mesh. The position of the new face point
generated is the average of all the original points, that
is

w:%;w
e Edge point
The new edge points are generated from each
edge of the initial mesh. The position of the new edge
point is the average of the mid points of the original
edge with the two new face points of the faces adjacent
to the edge.
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e Vertex point
The new vertex points are generated from each
vertex of the initial mesh. The position of the new ver-
tex points can be calculated as

N N
Vy =ayV +BNZ Vai +7N2 Vain
= =l

3 1
where B, :ﬁ,y,v :N’ ay =1 =N(By +yy).
The Catmull-Clark subdivision masks are shown
in Fig. 1.
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Fig.1 Catmull-Clark masks. (a) Face point; (b) Edge point,
N =4;(c) Vertex point

This subdivision scheme produces surfaces that
are C* continuity everywhere except at extraordinary
vertices where they are C' continuity.

2 Energy Analysis of Catmull-Clark Subdi-
vision Surfaces

2.1 Parameterization of Catmull-Clark subdivision
surfaces
Regular patch of the Catmull-Clark subdivision
without extraordinary vertices is actually uniform bicu-
bic B-spline surface, as shown in Fig. 2. The surface
can be represented as'®
S(u, w) =C) b(u, w)

where C) = {c¢,, ¢ s> ---

O=su<l,Osw<l

’ Coi,le}T, and b (u, w) =

{b,(u, w), by (u, w), ..., bys(u, w)}* =B (see Ref.
[8D).

The control vertex structure near an extraordinary
14 15

Fig.2 A bicubic B-spline defined by 16 control vertices

vertex is not a simple rectangular grid. A patch that
contains extraordinary vertices cannot be evaluated as
uniform B-spline, as is shown in Fig. 3. It should be
subdivided into many sub-patches. We assume that the
initial mesh has been subdivided at least twice, isola-
ting the extraordinary vertices, so that each sub-patch is
a quadrilateral and contains at most one extraordinary

Vertex[g] .

(b)

Fig.3 Irregular surface patch. (a) Surface patch contained an
extraordinary vertex; (b) Ordering of the control vertices
Let N denote the valence of the extraordinary ver-
tex, K =2N +8 be the number of vertices for calculat-
ing the patch. A new set of M = K +9 vertices can be
generated by subdivision. The new set of vertices is
shown as circles superimposed on the initial vertices in
Fig. 4. Subsets of these new vertices are the control
vertices of three uniform B-spline patches. Therefore,
three-quarters of our surface patch is parameterized.
Denote this new set of vertices by
C ={ciic0 0 Cl,lG}T
C = {ciisClas oo €l Crigars oo CI,M}T
With these matrices, the subdivision step is a mul-
tiplication by an M x K (extended) subdivision matrix
A:
C, =AC,
The additional points needed to evaluate the three
B-spline patches are defined using a bigger matrix A of
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size M x K:
Zv1 =A tv0
The matrices A and A are defined in Ref. [8].
C,=AC,  =AA""'C, =AVA" 'V ™',
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Fig.4 A patch of Catmull-Clark subdivision with an ex-

traordinary vertex. (a) Control mesh with an extraordinary ver-
tex; (b) Sub-patches after one subdivision

For each subdivision level n, a subset of the verti-
ces of C, becomes the control vertices of three B-spline
patches. These control vertices can be defined by selec-
ting 16 control vertices from C, and storing them in
picking matrices'' P, .

Each sub-patch corresponding to each control ver-
tex is defined as

SeaCu.w) =C P b(u, w)
where (u, w) e () and k =1, 2, 3. The unit square () can
be parted into an infinite set of tiles ()}, as shown in
Fig.5.
Q) =[27,271] x[0,27]
Q= [27,27 1] x [27,277]
Q) =[0,27] x [27,277]

A parameterization for S(u, w) is constructed by
defining its restriction to each tile ();.

S(u, w) is equal to B-spline patch defined by the
control vertices.

SCu, w) | gy = S, (1, (1, w)) = CPb(1 (1, w)) =

= [0
o
% | %
“ o ()

Fig.5 Partition of unit square into an infinite family of tiles

CoVIIA" X b(1, ,(u, w)) (2)
where X, =P AV.
The transformation ¢, , maps the tile ()} onto the
unit square ().
to(u,w) =(2"u-1,2"w)
L (u,w) =(2"u-1,2"w-1)
ty,(u,w) =(2"u,2"w - 1)
2.2 Exact energy analysis of regular patch of
Catmull-Clark subdivision
As regular patch of the Catmull-Clark subdivision
is uniform bi-cubic B-spline surface, its energy E; can
be evaluated as

1 1
Ew = [ [ CISGew) |7+ 1 S,Guw) || %) dudw
0J 0

ci[ [ [ B,BY +B,B) duaw]C,
040

where
B, =b,(u,w) =
{bu.l(u’ W)’bu,Z(u’ W)9 ""bu,16(u7 W)}T

b, (u,w) :i( “3+46u-3u’)(1 =3w+3w —w’)

Similarly, B, B, B,,, B,, can also be written.
Energy of regular patch of Catmull-Clark Subdi-
vision E, can be calculated as

E, =E,, +EIp =Cg QICO (3)
1 .1
where Q, = [ j 0 f (B,B) +B,B +B,,B,, +2B,B,

uu uw" uw

+B_B' )dudw

ww ww

] 16 x16

2.3 Exact energy analysis of patch of Catmull-
Clark subdivision with an extraordinary point
Although the Catmull-Clark subdivision surface
with an extraordinary point cannot be a parameteriza-
tion, the energy of a patch of the Catmull-Clark subdi-
vision with an extraordinary point can be evaluated by
a sub-patch. As an example, the following shows how

to get an exact value of ﬂ | S, (u,w) || *dudw of the

patch with an extraordinary point shown in Fig. 4. After
one subdivision, the patch is divided into four sub-pat-
ches. The sub-patch is subdivided recursively. The area
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of the sub-patch that contains an extraordinary point
becomes smaller and smaller. Obviously, the integral
may be done in three parts: Q, () and ();, as shown
in Fig. 5.
According to S(u,w) |o, = GV A" X[ -
b (tk,n(uaw))s on Q'Il:
S, =CoV A" ' X;b, (2"u-1,2"w)
S;=Co VA" ' X, by(2"u -1,2"w)
where a =2"u —1,8=2"w
The integral of ﬂ | S,(u,w) || *dudw on these
Qj(n=1,2,3,...) can be obtained by Eq. (2).
On Q;:
ﬂu S, (u, w) || *dudw = fSaSZdudw =
al a}

Lot

ClV7TAX! b (2u —1,2w) -
0 1 (J'%J’o a( u w)

b’ (2u - 1,2w)dudw)X,A"’lV’lC0 -

JTC(T VIATXT (j;f;ba(u, W) -

bl (u, w) dad,B)X]A”’lV"CO -
[ P Y

LG VAT (fojobu(u,w)
" (u, w) dudw )X A"V,

1 -
SC VA pd f f B,B! dudw)
x,A"'v'c,

On Q}:

[1rs.cuwy | >dudw =
0

4%(:(1)- V’TAIXT(I(IJ:)B”BI dudw)X]AlVACO
On Of:

[ 1S, wy 12 dudw =

o

T -1 ¢T Yt T -1ys-1
ZC VIATX (jofoBuBu dudw)XlA vic,
Thus, summing the above equations yields inte-
gral on (),.
ﬂn S, (u, w) || *dudw =

0

lim 2 [ 18,00 w) 1 *dudw] =

e o

o
T -T (Dul)i' -1
avilamalre

where D,, = X[ ( f f B,B dudw)X

Similarly
[ 15.Caw) [ dudw = €3 v Puds Jyoig,
Q 4 -\

where A, is the i-th eigenvalue of the subdivision ma-

wix 4, D, = X{( f f B,B dudw)X

Thus, summing the above equations yields inte-

gral ofﬂ IS, (i, w) || *dudw on €.

ﬂll S, (u,w) || *dudw =

i > ([ 18, | *duaw)] =

k=1 n=1

o
i (ci V‘T[%] ViC,) = GO
k=1 —AA;

similarty,  [[115, (u,w) [Pdudw, [ 115,000, ) [,

HHSW(L[ w) |[*dudw and ﬂ“sww(u, w) |*dudw can be

exactly evaluated, thus the energy of the patch with an
extraordinary point £ can be obtained.

E, =C) Q,C, (4)
o = 21V ()]

ww un" uu

1 .1
where D, = (PAV)" H j (B,B" +B,B" +B,B", +

uw ™" uw wwww

2B, B’ + B B )dudw] (P,AV),D, is independent

of parameter (u, w), and it may be pre-computed.
2.4 Total energy evaluation of Catmull-Clark
subdivision surfaces

According to energy analysis in sections 2. 2 and
2.3, the energy can be evaluated on both regular and
non-regular patches of the Catmull-Clark subdivision
surface. The total energy of the Catmull-Clark subdi-
vision surfaces E can be evaluated as

d
= Z((RiC)TQi(RiC)) =C'QC (5

where C = {V,, V,, ...,
composed of m control points of the Catmull-Clark

V. 1" is the column vector

subdivision surfaces; d is the number of patches com-
posed of m control points; R, is a K x m picking ma-
trix, in which each row has only one non-zero entry
that equals one and entries all equal zero; @, is a K x
K matrix, @ or Q;; Q is an m x m matrix.

3 Application

In this part, the minimum energy of the Catmull-
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Clark subdivision surfaces is used as a fairness norm
for blending patches.

There are many methods to blend patches' .
Here, the subdivision surface is adopted to blend pat-
ches.

It is supposed that the base patches are bi-cubic
B-spline patches which are defined by an s x ¢ control
net. The k-th patch is denoted by P* and its control
vertex is denoted by {Vi}(i=1,2, ...,5j=1,2, ...,
t). The directions of i and j are shown in Fig. 6(a).
The blending problem can be described as construc-
ting a Catmull-Clark subdivision surface to join B-
spline patches.

(¢) (d)
Fig.6 Blending 5 patches. (a) B-spline control net of 5 base
patches; (b) Initial mesh of blending subdivision surface; ( c¢)
Blending effect without optimizing; (d) Blending effect by optimi-
zing
3.1 Creation of initial mesh of subdivision surface
In order to generate a fairing subdivision blend-
ing surface, it is required to construct the initial mesh
of subdivision surfaces meeting the fairing condi-
tions''"”’. Firstly, according to C” continuity of joining
with each patch P*, let the initial mesh contain the in-
ner three rows of the control vertex of P* (i.e., {vf} s
i=1,2,3;j=1,2, ..., 1) . Next, add some new vertices
(..., vg, vlk, Vo, vf’l, v'z"l, ...) that formed a subdivi-
sion surface patch with the smallest energy.
3.2 Optimizing of new vertices of initial mesh
If there is no fairing restriction, the new vertex
can be chosen freely. In this paper, a fair blending
subdivision surface is guaranteed by norm of minimi-
zing the energy of the subdivision surface. For the
convenience of description, renumber the control verti-
ces as V|, V,, ..., V, . By the analysis in section 2, the
target function of fair blending subdivision surface is
expressed as
min: E=q,, Vi +q,V,V, +qsV, Vs + ... +
qiin + ...+ qmmen
Additional constraints: the positions of the outer
three rows of the new filling vertices are the same as

the positions of inner three rows of the control vertices
of the base patches.

According to 9 E/9dV, =0 and additional con-
straints, the liner system that contains the new control
vertices is obtained. The reasonable positions of new
control vertices of fair blending subdivision surfaces
are obtained through resolving this linear system.

3.3 Example of fair blending subdivision surface

Fig. 6 illustrates the process of blending 5 bi-cu-
bic B-spline patches which are defined by 13 x9 con-
trol net (see Fig.6(a)). Two rows of the new control
vertices of subdivision surfaces are inserted; i.e., the
control net adds 66 new control vertices ( see Fig. 6
(b)). The blending effect without optimizing is shown
in Fig. 6(c). Contrastively, the optimization blending
effect shown in Fig. 6(d) is better than in Fig. 6(c).
In Fig. 6(d), the positions of these 66 new vertices are
calculated by the energy optimization of subdivision
surfaces. The control vertices that are contained in the
energy optimizing system are shown in Fig. 6(b). The
blending subdivision surface is built by removing
boundary subdivision approach!'” .

4 Conclusion

Unlike the existing methods in which the evalua-
tion of subdivision surface energy diverges when the
patch of subdivision surfaces with an extraordinary
point, the new method presented in this paper has giv-
en analytical formulae for computing the energy of the
Catmull-Clark subdivision surfaces, so it not only al-
ways converges but can also obtain exact results in
evaluating the energy of the subdivision surfaces, even
if the subdivision surface contains extraordinary verti-
ces.

The application result of energy computing of the
Catmull-Clark subdivision surfaces has demonstrated
that the new method proposed in this paper is effi-
cient. In addition, the new method may easily be adap-
ted for computing the energy of other types of subdi-
vision surfaces such as loop subdivisions and so on.
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