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Monte Carlo numerical simulation and its application
in probability analysis of long span bridges
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Abstract: To get the probability of long span bridges under the influence of external random factors, the
Monte Carlo method using Latin hypercube sampling is applied. Combined with the condition assessment
system on Runyang Suspension Bridge, which is the longest suspension bridge in China, the structural
probabilities in normal and damaged situations are calculated with the external random factors considered
including environmental temperature, wind load, load of vehicles, etc. The main assessment items contain the
maximal vertical displacement of girder, the maximal stress of cables, the maximal horizontal displacement of
towers etc. Finally, the probabilities and their cumulative distribution functions are provided. The analysis
results can be plotted on line in a clear and vivid way, so the efficiency of assessment is increased and the
decision-making of maintenance is more objective and accurate.
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According to the Chinese national code, the uni-
fied standard for reliability design of highway struc-
ture ( GB/T50283—1999 ), the probabilistic theory
has been introduced and the probabilistic design of
limit state has been specified to be the general princi-
ple of structural design, which is a breakthrough in de-
sign theory. However, in the field of condition assess-
ment, especially in condition assessment on long-span
bridges, there is no perfect method that can take those
nondeterministic factors into consideration accurate-
Iy
have hardly been analyzed. Till now, most of these an-

, so the influence of those uncertain factors can

alyses depend upon qualitative estimates by experts;
however, for people who undertake daily bridge main-
tenance, it is hard for them to make quick and reliable
judgment upon these uncertain and fuzzy descriptions.
To consider the effects caused by arbitrary factors
quantificationally and to provide a reliable basis for
structural health monitoring and condition assessment,
in the following research, the probability analysis based
upon Monte Carlo simulation is used to calculate the
structural probability under different situations. The
output of analysis results is clear and vivid, so both the
efficiency and accuracy of assessment are increased.

1 Monte Carlo Numerical Simulation

1.1 Principle of the Monte Carlo method
The Monte Carlo method is a way to solve prac-
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tical problems by setting up a mathematical or physi-
cal model using statistical sampling theory'**'. Gener-
ally, a probabilistic model should be set up first, which
is related in some way with the practical problems.
Then computers are used to generate enough values of
input variables that follow specified distributions,
which means enough experiments are made. Because
there are similarities between the two sides, then the
generated values can be an indication of the variation
of random factors in the practical problem. Finally, the
calculated eigenvalues of the model ( mean value or
standard deviation of output variables, etc. ) can pro-
vide an approximate solution to practical problems.
1.2 Generation of stochastic values

To describe the random input variables, the fol-
lowing distribution functions are specified in Monte
Carlo sampling: Gaussian (normal) distribution, trun-
cated Gaussian distribution, lognormal distribution, tri-
angular distribution, uniform distribution, exponential
distribution, Beta distribution, Gamma distribution, and
Weibull distribution, etc.

When the random values are to be generated, for
example, there is a random variable X following
Gaussian ( normal) distribution, X ~ N(m, o), the
random values in region ( — %, + ® ) can be genera-
ted by

X=m+o¢ '[rand(0,1)] (1)

The random values in sub-region (a, b) can be

generated by

et o{7) o [o°57)-
d)(a—m

)]rand(O, 1) } (2)
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where ¢( ¢), d)‘l (+) are the cumulative distribution
functions of the Gaussian (normal) distribution and its
inverse function, respectively.
1.3 Sampling method

According to the magnitude of probability of fail-
ure and the complexity of different problems, there are
several sampling methods available.
1.3.1 Direct Monte Carlo sampling

The direct Monte Carlo sampling technique is not
the most efficient way, due to the fact that the sam-
pling process has no “memory”, so we may get a clus-
ter of two (or more) sampling points that occur close
to each other (see Fig. 1), which provides no new in-
formation.
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Fig.1 Direct Monte Carlo sampling

1.3.2 Latin Hypercube sampling (LHS)
Compared to the direct Monte Carlo sampling,
the Latin hypercube sampling (LHS) is a more ad-
vanced and efficient form. In an LHS, a sample
“memory” is used, meaning it avoids repeating sam-
ples that have been evaluated before (see Fig.2).
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Fig.2 Latin hypercube sampling

1.3.3

When the probability of failure is small, using the
direct Monte Carlo sampling would require too many
times of simulations, so we should increase the proba-
bility of failure to make the sampling more efficient,

Important sampling

meaning that more sampling points should be chosen
in the failure region. This is called the important sam-
pling, in this case, the probability of failure is shown
in Eq. (3)

3 =f I[g;v)(lngx(v)
where f,(v) is the probability density function of vari-
able V; P, (v) is the density function of important

. (1 ogv) <0
sampling; I[g(v)] = {0 o(v) >0’
important sampling depends on the definition of fail-
ure region, if the region is not properly defined, the
precision of sampling can hardly be achieved.

P,(v)dv (3)

The precision of

2 Application in Probability Analysis of
Runyang Yangtse River Bridge

Runyang Yangtse River Bridge is a long-span
bridge composed of a suspension bridge (with a main
span of 1490 m in length) and a cable stayed bridge
(with three spans of 176 m, 406 m, and 176 m, re-
spectively) , of which the suspension bridge is the lon-
gest one in China and the third in the world. Doing re-
search on it and its condition assessment system will
surely make great sense and have practical use.

2.1 Process of probability analysis using Monte
Carlo method

The probability analysis of Runyang Yangtse
River Bridge using the Monte Carlo method can be
done according to the following process, which is
shown in Fig. 3.

(D Build the model parametrically;

(2 Assign to parameters the quantities that will
be used as random input variables and random output
parameters;

) Specify any correlations between the variables;

@ Specify random output parameters;

|Build the model parametrically I

Specify random input(output )
variables, their attribute and
any correlations between the

variables
1

Monte Carlo numerical simulation

!

| Execute the loops

Show sampling history in graph

| Show sampling histogram

Show cumulative
distribution function

Probability of failure
Query changing tendency
Fig.3 Process of probability analysis

| Post processing
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(® Choose the probabilistic design tool or method;

(6 Execute the loops required for the probabilistic
analysis;

(D Review results of the probabilistic analysis.
2.2 Specification of input variables

In general, the random input variables can be di-

vided into two types, the load or load effect and the
resistance. The first type of input variables used in the
condition assessment system of Runyang Bridge ( the
load or load effect) and their statistical characters are
listed in Tab. 1.

Tab.1 Statistical property of load or load effect

Type of Type of Type of Mean value/ Deviation . X
load load effect distribution characteristic value  factor V Distribution function
A A 1 (u —1.0212r)"
Fy(x) =———— exX
Weight Gaussian 1.0212 0. 046 2 o(X) 0.047 2, mf B P[ 0.004 572 ]
1 " (u —0.788284,0)"
Foy(x) =——————— Al id LS
Loadop | Moment 0.7882 011 Fol) = o /27[ exp| - 001265,
vehicles Gaussian
(dense state) 1 * (u —0.709 684"
h X .1 Fou(x) =—————| exp| -—————F—|du
Shear 0.7096 0.10 ov(X) 0,008 45, /ﬁf p[ 0.009483, ]
Dynamic load _
of vehicles Extremum I 1.078 0.030 40 F(x) =exp{ —exp[ —a(x-B)1)
. _ 100 _ _ (x —1.086W,)
Wind load Extremum I 1.171 0.162  Fu(x) =[Fy(x)]" = CXP{ eXP[ _W]}
Highest Extremum 1 34.0°C 0. 022 F(x) =exp{ —exp[ - (x-33.7)/0.58]}
Temperature effect & (mean value) ' P P ’ ’
(southern China) -8.5C
Lowest Extremum I 0.175 F(x) =exp{ —exp[ - (x-7.8)/1.16]}
(mean value)
In the same way, the second type of input varia- 0.51
bles can be specified, including material property, geo- r
_ , 0.4k yARN
metrical parameters and analysis mode, etc. .
Fig. 4 and Fig. 5 show the characters of sam- |
. . . . . g L
plings and the sampling times-history of variable % 0.3
“structure deadweight”. Using the Latin hypercube < i
2 -
sampling, altogether there are 30 times of samplings, =2 0.2
and all these samplings followed the Gaussian ( nor- = I
.. . . . ‘o 0.1F
mal) distribution, which is specified beforehand.
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£ Fig.5 Sampling histogram II of variable “structure deadweight”
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Fig.4 Sampling histogram | of variable “structure deadweight”

2.3 Reliability analysis in normal situations

(61 " after N times of sam-

According to Kececioglu
plings and calculations, the lower confidence limit of a
1 — a confidence interval can be determined from

Egs. (4) and (5).

sampled data can only be given at the individual sam-

pled values x,, x,, ..., X;, X x,. Hence, the eval-

i+l e
uation of the probability that the random variable is
less than or equal to an arbitrary value x requires an
interpolation between the available data points.

If x is between x; and x,,,, then the probability

i+1°

that the random variable X is less than or equal to x is
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X —Xx;
—F) " (6)

i+l TN

The confidence interval for the probability P(X

P(X<x) =F, +(F,

+1

+x) can be evaluated by interpolating on the confi-
dence interval curves using the same approach.

According to the probability analysis approach
above, under the combined actions of deadweight, vehi-
cle load, wind load and temperature effect, several out-
put parameters are chosen and their effects are calculat-
ed, when the bridge is in normal situations, including
the maximal stress of box girder, the maximal vertical
displacement, the maximal stress of suspension cables,
the maximal stress of central buckle, and the maximal
displacement of towers (see Tab. 2). According to
Tab. 2, under the normal circumstance, those important
parameters of the bridge are all acceptable, meaning
that the bridge has enough reliability. Fig. 6 and Fig. 7
are presented here as analyses reports, showing the de-
tails of analyses on the assessment item °maximal
stress of box girder” and its cumulative distribution
function. These pictures show the final results in a clear
and vivid way. For technicians, especially those in
charge of the daily maintenance, it renders a great
sense of guidance.

Results of Probability Ana x|
i
Probability Result of Response Paraneter SMAX ZI
Selution Set Lahel = SoLua1
Simulation Method = Monte Carlo with Latin Hypercube Sampling
Nunmber of Samples =38
Mean (Average) Value = 9.1302386e+087
Standard Deviation = 1.431525We+nA7
Skewness Coefficient = -8.4922418e-082
Kurtosis Coefficient = —3.4368986e 081
Mininum Sample Value = 6.8926941e+087
Nasxinun Sanple Ualue = 1.2128994e U0y
The probability that SMAX is smaller than 3.1580088¢+808 is:
Probability [ Lower Bound, Upper Boundl
1. L W L. 1. )
NOTE: The confidence bounds are evaluated using a confidence level of
95 . @00:. . =

Fig.6 Details of analysis results on “maximal stress of
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Fig.7 Cumulative distribution function of “maximal stress of girder”
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2.4 Probability analysis in damaged situations

The availability of the assessment program also
depends on some other factors, for example, the finite
element model should meet the need of analysis and in
the module of damage identification all the damage
must be found and be put into the module of assess-
ment. Because no damage has occurred up to now
(the bridge is newly built), the input damage is only
a numerical simulation. On the assumption that there
is a3% to 5% weakening of cables detected after N
years of service, because of rust, several important
structural items are evaluated and the final results are
reported in Tab. 3. Known by Tab. 3 even in the 3%
case of a damage situation, the bridge is still reliable,
though all the evaluation items are worse than those in
a normal situation. However, when there is a 5% oc-
currence of weaning in cables ( see Tab. 4), the proba-
bility of girder displacement decreases to 96.2% , no
longer meeting the need of applicability. Meanwhile,
the probability of girder stress decreases to 96.2%,
the capacity of cable is not satisfactory any more.

girder”
Tab.2 Probability analysis output in normal situations during the design working life of bridge
Assessment item Mean value Standard deviation = Maximal value Minimal value Limit value Probability/ %
Maximal stress of girder/MPa 91.3 14.3 121.2 60.9 315 100
Maximal vertical displacement
. 0.981 4 0.654 3 2.4 0. 04 3.725 100
of girder/m
Maximal stress of cables/MPa 578.5 24.2 627. 4 530.5 835 100
Maximal stress of
158 20. 827 210.6 107.1 315 100
central buckle/MPa
Maximal horizontal
. 0. 096 95 0.0458 0.2205 0.0376 0.338 100
displacement of tower/m
Tab.3 Probability analysis output in damaged situations (3% )
Assessment item Mean value Standard deviation ~Maximal value Minimal value Limit value Probability/ %
Maximal stress of girder/MPa 91.8 14.1 120.3 62.9 315 100
Maximal vertical
. . 1.52 1. 06 3.48 0.2 3.48 100
displacement of girder/m
Maximal stress of cables/MPa 734 31.2 796. 6 673. 1 835 100
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Tab.4 Probability analysis output in damaged situations (5% )

Assess item Mean value Standard deviation =~ Maximal value Minimal value Limit value Probability/ %
Maximal stress of girder/MPa 91.9 14.6 120.9 63.2 315 100
Maximal vertical displacement

. 1.95 1.21 3.87 0.05 3.725 96. 2

of girder/m

Maximal stress of cables/MPa 734 35.2 835.3 663.7 835 97.7

3 Conclusion

If there are enough times of samplings, the Monte
Carlo method can be regarded as a precise approach.
After the bridge has been put into use, with the contin-
uous collection and analysis on monitoring figures, the
evaluation items will get continuous updating and be

[7,8]

more precise Using the Monte Carlo numerical

simulation method introduced here, the effects on
bridge structure caused by arbitrary variables can be
analyzed quantificationally, and all the results can be
plotted in a vivid and clear way, making the decision-

making of maintenance more objective and accurate.
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