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Abstract: A three-dimensional beam element is derived based on the principle of stationary total potential
energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for
high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two
deformation stiffness matrices due to the variation of axial force and bending moments are included in the
tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral
and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement
derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the

proposed element is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and
flexural-torsional buckling, of space frames even when fewer elements are used to model a member.
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Geometric nonlinearity is important for investiga-
ting the ultimate strength of space frame members that
fail due to axial-torsional and flexural-torsional buck-
ling. The conventional beam-column approach cannot
predict the flexural-torsional buckling because coupling
terms among axial, flexural and torsional displacements
are lost in the tangent stiffness matrix. Thus, the devel-
opment of efficient formulations for nonlinear analysis
of space frame structures has attracted the study of
many researchers.

Bathe and Bolourchi'"! developed a large deflection
finite element formulation and pointed out that the upda-
ted Lagrangian formulation is computationally more ef-
fective. Yang and McGuire'” presented a comprehensive
formulation of the thin-walled beam element starting
from the principle of virtual displacements. This formula-
tion was derived using the updated Lagrangian approach
and allowed the inclusion of all types of loading. Chan
and Kitipornchai" presented a formulation for beam-col-
umn elements with asymmetric thin-walled sections. The
coupling effect of axial forces, bending moments and tor-
sional moments is also included.

In most research, the cubic Hermite element is ex-
tended to the nonlinear analysis of space beams. The in-
cremental secant stiffness matrix including the geometric
stiffness with the linear stiffness matrix is often lin-
earised into the tangent stiffness matrix. In order to accu-
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rately predict the nonlinear performance of a beam, some
higher order terms should be taken into account. Meek
and Tan' allowed for higher order terms, due to axial
force, in their element formulations. Al-Bermani and
Kitipornchai® proposed an improved analysis technique
using fewer elements to model a member via the intro-
duction of the deformation stiffness matrix. Yang and
Leu' accounted for higher order nonlinear effects in the
force recovery procedure in two-dimensional nonlinear
analysis and obtained better results than using conven-
tional equations. Liew et al.'” developed a mixed ele-
ment for improving nonlinear analysis of space frame
structures. Their method is clever in that the merits of the
stability functions, cubic Hermite functions and the
pointwise equilibrium polynomial (PEP) functions were
fully used. In their formulations, the stability functions
were employed for the effect due to the axial force, the
cubic element for the effect due to bending moments and
the PEP element for bowing and member initial out-of-
straightness. Thus, the higher order effects were included
in their matrix.

This paper describes a new tangent stiffness ma-
trix, which allows for high order effects of element de-
formations, for geometrically nonlinear analysis of
space frames. The following assumptions are made in
this study: (1) The beam element is slender, the Euler-
Bernoulli hypothesis is valid and warping is neglec-
ted; @ The beam element is doubly symmetric and
prismatic; (3 The material remains elastic within the
loading range; 4) The load is conservative, nodal and
shear deformations are negligible; (5) Cross sections
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are compact and rigid and do not distort; (6) Small
strains but moderately large displacements and rota-
tions are assumed.

1 Element Stiffness Matrix

1.1 Total potential energy of an element

The element stiffness matrix can be derived by ap-
plying the principle of stationary potential energy. The
total potential energy of a general element is given by

H=uv-v (1)
in which U is the strain energy stored in the element,
and V is the external work done.

In the updated Lagrangian formulation, incremen-
tal nodal force and incremental nodal displacement
vectors f and u at the two ends of the element are giv-
en by
f= {fxl’fyl’le’ m, my, m,, x2’fv2’.f12’ My, My, M, }T

(2)
w={u, v, w, 0, 0,, 0, uy, vy, Wy, 0,5, 0,5, gzz}T
(3)

The strain energy of a space beam element can

be determined as'”
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where E is the elastic modulus; G is the shear modu-
lus; L is the length of element; A is the cross-sectional
area; [, and /, are the second moments of area; rf =(1,
+1.)/A is the polar radius of gyration about the shear
center; J is the torsional constant; u is the axial dis-
placement; F, F,F,M,M, and M, are the nodal
forces in and moments about x, y and z axes; 6, is the
angle of twist; v, w are the lateral displacements; a
prime represents a derivative with respect to x.

The element nodal force vector in which the
above nodal forces at the element ends are contained
for the three-dimensional beam element is as follows:
F= {Fxl’Fy]’le’Mxl’Myl’le’FXZ’F}Q’

FzZ’M)Q’MyZ’MzZ}T (5)

In Eq. (4), bending moments are assumed to be
distributed linearly, torques are constant. So forces F,
and M, at the internal cross-section x can be expressed

in terms of those at the element ends using
F. =F,=P (6)
Fy = _(le +M12)/L (7)

F.=(M, +M,)/L (8)
M. =M, (9)
M,=-M,(1-x/L) +M,(x/L)  (10)

M, = -M,(1-x/L) +M,(x/L) (11)
The work done by element nodal force under
nodal displacement increments is given by
V=u'f (12)
Linear interpolation functions are adopted for the
axial displacement u and the angle of twist 6, . Cubic
interpolation functions are used for the lateral dis-
placements v and w. Substituting these functions into
Egs. (4) and (1), the expression for the total potential
energy may be defined in terms of the incremental
nodal displacements at the two ends of the element.
1.2 Incremental tangent stiffness matrix
The beam element secant equilibrium equation
can be formulated from the principle of stationary po-
tential energy
8l =0 (13)
which leads to the element secant stiffness matrix in
updated Lagrangian formulation. It can be written as
f=(k, +kg)u (14)
where k, is the linear stiffness matrix, and kg is the
geometric stiffness matrix. In general, the derived in-
cremental secant stiffness matrix is linearised into the
tangent stiffness matrix, which is then used as both the
predictor and the corrector in the incremental-iterative
analysis. Here, the incremental tangent stiffness matrix
can be obtained by the differentiation of incremental
forces with respect to incremental displacements.
In the co-rotational formulation, the six element
basic forces can be obtained in terms of total element
basic deformations from Eq. (13) as
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where e is the relative axial stretch; @, =@, - 0, is
the total twist; @, @ ,, @, and @, are the total end
rotations. It should be noted that the above secant
equations are different from those given by Meek and
Tan''. These equations allow for the coupling be-
tween bending and torsion.

Making use of chain differentiation, the terms in
the incremental tangent stiffness matrix can be derived
from the following equation,

af, o, Laf, oM
L op | M
Y du; 9P ou; = IM, du,
where M, represents the bending moment, and k = yl,

y2,z1 and 22.

It should be noted that the derivatives of axial
force and internal bending moments are the same irre-
spective of the total or the incremental displacements.
For example, the differentiation of the axial force with
respect to a total rotation is identical to one with re-
spect to an incremnetal rotation as aP/9@,, =P/ d6,,.
Only the linear parts are retained in terms oM,/ du,.

Eq. (21) can be written in matrix form as'®

df =kdu (22)
k=k +kg+k,+ky (23)
in which k is the incremental tangent stiffness matrix,
k, the component due to the variation of axial force,
and k,, the component due to the variation of bending
moments. They are all obtained by taking variation on
the geometric stiffness matrix kg. It is interesting to
note that the element deformations in matrix k, are the
total element deformations and those in matrix k,, are
deformation increments during iterations. The matrices
k, and k,, are symmetrical and the non-zero compo-
nents are given in appendix.

2 Consideration of Rotations and Moments
in Space

The non-commutative nature of rotations in space
makes the three-dimensional large displacement analysis
more complicated than two-dimensional analysis. Argyris
et al. " first proposed the concept of a semitangential ro-
tation. Semitangential rotations are independent of the or-
der of the rotations and can be added like true vectors if
their components are about orthogonal axes.

Argyris et al. " identified bending moments as
the quasitangential moments and St. Venant torques as
the semitangential moment. Either of these moment
types is generated as a stress resultant at each cross
section of the structural members. In the formulation

by Yang and Kuo''”, the potential energy associated
with all six stress components are considered and the
quasitangential properties of the bending moments M|
and M, and the semitangential property of the torque
M, can be revealed naturally.

Argyris et al. """ further pointed out that an ap-
parent lack of equilibrium could occur when a joint,
which is initially in equilibrium, is subjected to a finite
rotation, even though the error associated with the
vectorial assumption for three-dimensional small rota-
tions is minimal. The assumption based on the behav-
ior of moments undergoing finite rotations was dem-
onstrated to affect the response of a structural system
significantly. In the literature, the problem associated
with the lack of equilibrium at rotated structural joints
has been solved through the use of semitangential mo-
ments and rotations for modeling the nodal moments
and rotations. For example, Argyris et al. " modified
the properties of nodal bending moments from their o-
riginal quasitangential to a semitangential nature, by
adding a correction matrix to the geometric stiffness
matrix.

Argyris et al. " and Yang and Kuo'" enforced
the conditions of satisfaction of equilibrium for struc-
tural joints of a deformed configuration by imposing
the joint moment matrix, i. €. a correction matrix su-
perimposed upon the geometric stiffness matrix. In
such a situation the nature of quasitangential moment
need not be changed, and displacement derivatives are
still selected as the rotational degrees of freedom. In
this case, the semitangential rotation concept need not
be used.

For the spatial frame element, a correction matrix
should be added to the incremental tangent stiffness
matrix to yield the true equilibrium condition that sat-
isfies the rigid body test. So the incremental tangent
stiffness matrix k in Eq. (23) becomes

k=k +ks+ky,+ky +k, (24)
where k, is the induced moment matrix''"”'.

k, is asymmetry for an individual element due to
the lack of conjugateness between bending moments
and rotation degrees of freedom. The asymmetrical
parts will be canceled at the joints when the element is
connected to the other elements. When the induced
moment matrix is assembled into the structural tangent
stiffness matrix, only the symmetrical part is required
because of the enforcement of the equilibrium condi-
tions for interconnected elements at structural nodes.
Therefore, the symmetrical part of the induced mo-
ment matrix, which is referred to as the joint moment
matrix k;(see Ref. [10]), needs to be assembled to
form the structure tangent stiffness matrix.
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3 Nonlinear Analysis Procedures

In the nonlinear load-deflection analysis of a spa-
tial frame, k, , kg, kp and kj are used in the “predictor”
phase. This phase involves the solution of structural
displacement increments from the total equations of
equilibrium. All the components of the tangent stiff-
ness matrix k are used in the “corrector” phase. This
phase is concerned with the recovery of the element
forces from the element displacement increments ob-
tained in the predictor phase.

The natural deformation approach proposed by
Gattass and Abel''” is adopted in the *corrector”
phase. The element incremental displacements can be
conceptually decomposed into two parts: the rigid
body displacements serve to rotate the initial forces
acting on the element from the previous configuration
to the current configuration; whereas the natural de-
formations constitute the only source for generating
the incremental forces. The element forces at the cur-
rent configuration can be calculated as the summation
of the incremental forces and the forces at the previ-
ous configuration. Once the element natural deforma-
tions are obtained, the element force increments can
be evaluated mathematically as

f=(k, +k, +k +k, +k,) u, (25)
in which u, denotes the natural deformation obtained
by excluding the rigid body motions from the element
displacement vector u defined by Eq. (3).

The updated internal forces in an element can
thus be obtained as

“'F='F+f (26)
in which 'F are internal forces at the i-th configuration.

4 Numerical Examples

4.1 Axial-torsional buckling of a column

Fig. 1 shows a column of doubly symmetric
cross-sections under the action of an axial force. The
two ends of the bar are rigidly built-in. The material
and section properties are E = 200 GPa, G = 76. 9
GPa, A =4.706 x10 * m?, 1, =6.992 x 10 ° m*, I, =
1.949x10° m*, J =2.045 x 10 " m*, L =4.0 m.
The theoretical torsional buckling force can be predic-
ted as P, = GJ/r,” =2.795 MN. In the geometrical
nonlinear analysis, a disturbing torque of M, =2.5 x
10 ~* PL is applied at mid-span of the column to initi-
ate the displacement and the twist. The column is
modeled by two or four proposed elements, and, for
comparison, by the conventional cubic elements with-
out the inclusion of the present matrices. The same re-
sults are obtained by two and four present elements.
They are also in good agreement with the results from

Timoshenko’s theory'” by the following equation

a0, -
(GJ+PrT)aTé:2MX -'M_=2.5x10 4P% (27)
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Fig.1 Load-displacement curves of axially compressed col-
umn. (a) Axially compressed column; (b) Load-displacement curves

The results by two or more conventional cubic
elements cannot accurately predict the nonlinear be-
havior because the incremental secant equation does
not allow for higher order terms in twist deforma-
tions. The results by two elements proposed by Al-
Bermani and Kitipornchai'®' are also plotted in Fig. 1,
which show that their results are excellent in small and
moderately large deformation ranges with twist less
than 0. 4 rad. The above results are based upon small
twist rotation theory in which the effect of an axial
force is taken into account. If large twist rotation theo-
ry is adopted and the nonlinear component of longitu-
dinal strain is allowed for, the column may be stiff-
ened to prevent helical shortening of the longitudinal
fibres of the member during large twist'"*'.
4.2 Williams’ toggle frame

The two-member frame shown in Fig. 2 has been
solved both experimentally and analytically by Wil-
liams'"”' . Recently, the problem was also analyzed by a
number of researchers including Liew et al. "' and Teh
and Clarke''®'. Material and section properties are E =
0.3 x10° psi (71 GPa), A =0. 183 in’(1. 181 cm®) and
71=9.00 x10™* in*(0.037 5 cm"). This frame is ana-
lyzed by using one proposed element and the results
are compared with those obtained using the cubic ele-
ments and an exact element by Chan and Gu'""'.

As shown in Fig. 2, the load-deflection behavior
of the frame cannot be predicted accurately by using
two or four cubic elements for each frame member.
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Fig.2 Load-deflection curves of Williams® toggle frame.

(a) Williams’ toggle; (b) Load-deflection curves
The necessary accuracy can only be obtained when
eight cubic elements are used and the equilibrium path
is then close to the results predicted by an exact ele-
ment. Only one proposed element per member is
needed and the load-deflection curve can be predicted
with good accuracy when compared with that of the
exact element.

Teh and Clarke'"” noticed this situation and
claimed that the error using cubic elements is attribu-
ted to the updated Lagangrian formulation in which a
straight configuration at the last known state is as-
sumed instead of a deformed configuration. They also
observed that good accuracy can be obtained by using
co-rotational cubic elements. But in this study, the ele-
ment is still developed in the updated Lagangrian for-
mulation. The conventional cubic element in the upda-
ted Lagangrian formulation is based on the element
secant stiffness instead of tangent stiffness. The tan-
gent stiffness includes the high order effect of the ele-
ment deformations as well as the initial stress. This is
why the proposed element and co-rotational cubic ele-
ments are successful. It can be seen that the proposed
element can take the P - § effect and member bowing
effects into account.

5 Conclusion

This paper describes a refined beam element for
geometrically nonlinear analysis of space frames in an
updated Lagrangian framework. A new incremental tan-
gent stiffness matrix includes two deformation matrices
due to the variation of axial force and bending mo-
ments. These proposed matrices are believed to be orig-
inal. They allow for high order effects of element de-
formations and incorporate the coupling among axial,

lateral and torsional deformations. An induced moment
matrix is used together with the tangent stiffness matrix
for beam elements to analyze the deflection behavior of
space frames. Numerical examples demonstrate that the
proposed element is accurate and efficient in predicting
the nonlinear behavior, such as axial-torsional and flex-
ural-torsional, of space frames even when fewer ele-
ments are used to model a member.

Appendix Deformation Tangent Matrices
e Components of deformation tangent matrix k,

S
K,(1,2) = -ﬁ(@“@d)

S
K,(1,3) =ﬁ(@yl +0,)
r? S,
L

KP(1’4) = - (@xl _@ﬁ)
S,L
KP(I,S) 2%( —4@),1 +@y2)
S,L
KP(1’6) zﬁ( _4@11 +@Z’2)
S
K,(1,8) =ﬁ(@z1 +0,)

S

K,(1,9) = -ﬁ( 0, +0,)

r? S,
L

KP(I’ 10) = (@xl - @x2)

S|L
Ky(1,11) =505, -40,,)

S,L
Ky(1,12) =510, -46.,)

K.(7,]) = -K,(1,J) J=1,2,...,12
K.(1,D)K,(1,
K, (LJ) = »( )Sp( )

1
1=2,3,...6,8,...,12;J=2,3,...,6,8, ..., 12
e Components of deformation tangent matrix k,,
6( -5, +5;)
Ky(2,3) = =0, +6,)
KM(2’4) :2S3(0)'1 _0y2)
K,(2,5) =25,(20,, +0,) +25;(6,, —0,,)

6(S, -S,)
K, (2,9) :szaxl +0,)

K,(2,10) = -28,(6,, —0,,)

KM(2, 11) :2S2(0xl +26x2) _253(0;4 _sz)
K, (3,4) =2S5,(0, -6,)
K,(3,6) =25,(0,, —6,,) +25,(20,, +0,,)

6(S, -S;)
KM(3’8) =T(0n +0x2)
K,(3,10) = -285,(6, -6,)
K,(3,12) = =25,(0,, —0,,) +28;(6,, +20,,)
K,(4,5) = -S,L(6,, —-0,)
KM(4,6) =S3L( 0y1 _eyz)
K, (4,8) = -25,(6,, -6,,)
KM(47 9) = _2S2(011 _6:2)
K,(4,11) = -S,L(6, -0,)
K, (4,12) =S,L(0,, —6,,)
KM(5’6) =( _SzL+S3L)(0x1 _‘9x2)
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K, (8,11) =

KM(S’ 8) = _2S2(20x1 +0x2) _2S3(0x]
K, (5,10) =S,L(0, -0,)
K, (5,12) =(S,L+S,L)(0, —0,)
KM(6’9) = —-25,(0, —0,) —25;(20,, +6,)
K, (6,10) = -S,L(6,, —6,,)
K,(6,11) = - (S, L+S L) (6, —60,)

6( =5, +5,)
KM(8’9) =7(9n +0x2)

L
K,(8,10) =28,(0,, - 6,,)
_2S2(9x1 +20x2) +2S3(0x1 _9)(2)
K, (9,10) =25,(6, -6,)

KM(9’ 12) :252(0,\’1 _0x2) _2S3(0X1 +20V2)
K, (10,11) =S,L(6,, - 6,)
K,(10,12) = - S;L(6,, - 6,,)
K,(11,12) =(S,L - SL)(0 -6,)

- 0x2)
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EA El, El L+r
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