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Abstract: Let R be an associated ring with identity. A new equivalent characterization of pure projective left R-

modules is given by applying homological methods. It is proved that a left R-module P is pure projective if and

only if for any pure epimorphism E —M —0, where E is pure injective, Hom, ( P, E) —Hom,(P, M) —0 is

exact. Also, we obtain a dual result of pure injective left R-modules. Furthermore, it is shown that every pure

projective left R-module is closed under pure submodule if and only if every pure injective left R-module is

closed under pure epimorphic image.
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Throughout this paper, R means an associated ring
with identity and R-modules are all unital. Purity of
modules has been extensively studied by many au-
thors'' ' In this paper, we mainly discuss pure projec-
tive modules and pure injective modules.

A submodule T of a left R-module N is said to be
a pure submodule if 0—-A&® T—AQ N is exact for any
right R-module A"™'. While 0—T7—N is said to be a
pure monomorphism if 7 is a pure submodule of N, al-
$0, 0—->T—>N—N/T—0 is called pure exact™ . For left
R-modules A, C, an epimorphism f: A—C is called a
pure epimorphism if Hom (M, f): Hom, (M, A) —
Hom,(M, C)—0 is exact for any finitely presented left
R-module M'". A left R-module P is called pure pro-
jective if every pure epimorphism M—P splits for any
left R-module M'". A left R-module E is called pure
injective if every pure monomorphism E—M splits for
any left R-module M"'.

For projective modules and injective modules, we
recall the following well known facts: a left R-module
M is projective if and only if for every exact sequence
N—> A — 0, where N is any injective module,
Hom, (M, N)—Hom,(M, A) —0 is exact; a left R-mod-
ule N is injective if and only if for every exact se-
quence 0—A—M, where M is any projective R-mod-
ule, Hom, (M, N)—Hom, (A, N) —0 is exact. Natural-
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ly, we want to know whether there are similar proper-
ties for pure projective modules and pure injective
modules? Here, we say yes!

The next two lemmas are well known, so we omit
proofs.

Lemma 17" Let A, B, C be left R-modules satis-
fying ACBC C.If A pure in B, B pure in C, then A
pure in C.

Lemma 2”' Every left R-module is a pure subm-
odule of a pure injective R-module.

Theorem 1 A left R-module P is pure projective
if and only if for any pure injective left R-module E
and any pure epimorphism E—M—0, Hom, (P, E) —
Hom, (P, M)—0 is exact.

Proof (=) Trivial.

(&) For any pure exact 0 A"’ —>A —A"—0
(where suppose A: A'—A; u: A—A") and any homo-
morphism f: P—A". We need to prove that there exists
a homomorphism g: P—A such that ug =f. Indeed, for
the left R-module A, by lemma 2, there exists a pure
monomorphism i: A—E where E is pure injective. By
lemma 1, ix: A’—E is a pure monomorphism. So we
have an exact sequence 0—A'—E—FE/A’'—(0, where
iN:A'—>E, m: A—>E/A’. From Five Lemma, we see that
there exists a monomorphism /: A"—E/A’ such that Au
=qri. Hence there is a homomorphism hf: P—E/A’.
Note that 77: E—~E/A’ is a canonical epimorphism. By
assumption, there exists a homomorphism k: P—E such
that 77k = hf. For any p € P, if k(p) =0, there exists
unique a =0 € A such that i(a) =0 =k(p) since i is a
monomorphism. If k(p) #0, then 7k(p) e E/A’. Since
w is an epimorphism, we have u(a) =f(p) for some a
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e A. It follows that

wk(p) =hf(p) =hu(a) =mi(a)
Hence

k(p) —i(a) Ckermr =Imix CImi
It is easy to see that k(p) € Imi. Then there exists a
unique a € A such that i(a) =k(p). So we may define
a map g: P—A by g(p) =a. From the above, we see
that g is a well-defined homomorphism and ig(p) =i
(a) =k(p) for any p e P. It follows that

hug = mig =k = hf

Since 4 is a monomorphism, it follows that ug =f.

Now, we prove a dual result of theorem 1. First,
we also have two lemmas.

Lemma 3 Let A, B, C be left R-modules. f: A—B
and g: B—C are both pure epimorphisms, then gf: A—
C is a pure epimorphism.

Proof For any finitely presented module left R-
module F and any homomorphism A: F—C. Since g: B
—C is a pure epimorphism, there exists a homomor-
phism A: F—B such that gA = h. However, f: A—B is
also a pure epimorphism, then there is a homomor-
phism k: F—A satisfying fk = A. Hence we obtain that
gfk=g\A =h, i.e., gfis a pure epimorphism.

Lemma 4"  For every R-module M, there exists
a pure projective R-module P such that f: P—M is a
pure epimorphism.

Theorem 2 A left R-module E is pure injective
if and only if for any pure projective left R-module P
and any pure monomorphism M— P, Hom, (P, E) —
Hom,(M, E)—0 is exact.

Proof (=) Trivial.

(<) For any pure exact 0 A" -A—A"—0
(where suppose i: A'—A, 7: —A") and any homomor-
phism f: A’—E. We need to prove there exists a homo-
morphism g: A—FE such that gi =f. By lemma 4, we see
that there exists a pure projective left R-module P such
that u: P—A is a pure epimorphism for a left R-module
A . It follows from lemma 3 that 7u: P—A" is also a
pure epimorphism. Hence there is a pure monomor-
phism A: K— P where K = kermu. From diagram
chasing and the Five Lemma, it has an epimorphism ¢:
K—A' such that uA = ip. By assumption, there exists a
homomorphism i: P—E such that kA = fo. If kery C
kerh, then from Factor Theorem, there exists a homo-
morphism g: A—FE such that gu = /. Hence

gip = guA =hA =fo
Note that ¢ is an epimorphism, it follows that gi = f.

Now, we prove kety Ckerh. For any p e P and w(p) =
0, then 7 (p) =0, which implies p € kermu = ImA.
Hence A(k) =p for some k € K, and fop(k) =hA(k) =
h(p). Since 0 =u(p) =uA(k) =ip(k) and i is a mono-
morphism, it follows that ¢(k) =0. Therefore, h(p) =
Jo(k) =0. The proof is complete.

Theorem 3 For a ring R, the following state-
ments are equivalent:

(D Every pure submodule of pure projective left
R-module is pure projective;

) Every pure epimorphic image of pure injective
left R-module is pure injective.

Proof (D= Assume E is a pure injective left
R-module, and 77: E—M is any pure epimorphism. We
need to prove M is pure injective. For any pure mono-
morphism i: A—P with P pure projective and any ho-
momorphism f: A—M. Since P is a pure projective left
R-module, A is also a pure projective left R-module by
assumption. There exists a homomorphism g: A —E
such that 77g =f. However E is a pure injective left R-
module, it follows that there is a homomorphism #: P—
E such that g = hi. Put k =7h. Then we have

ki=mhi=mg=f
From theorem 2, M is pure injective.

@ =@ Suppose P is a pure projective left R-
module, 7 is a pure submodule of P. We claim T is
pure projective. For any pure epimorphism f: E— M
where E is a pure injective left R-module and any ho-
momorphism g: 7—M. By assumption, M is pure injec-
tive since E is pure injective. Hence there exists a ho-
momorphism h: P—M such that hi = g. Note that P is
pure projective, then there exists a homomorphism k: P
—FE such that fk =h. Let ¢ =ki. Then we have

Jo=fki=hi=g

From theorem 1, T is a pure projective left R-module.
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