Journal of Southeast University ( English Edition) Vol. 21, No. 4, pp. 509 -512 Dec. 2005 ISSN 1003—7985

Global exponential periodicity
of a class of impulsive neural networks

Liang Jinling

(Department of Mathematics, Southeast University, Nanjing 210096, China)

Abstract: By the Lyapunov function method, combined with the inequality techniques, some criteria are
established to ensure the existence, uniqueness and global exponential stability of the periodic solution for a
class of impulsive neural networks. The results obtained only require the activation functions to be globally
Lipschitz continuous without assuming their boundedness, monotonicity or differentiability. The conditions are
easy to check in practice and they can be applied to design globally exponentially periodic impulsive neural
networks.
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1 Preliminaries

In the past twenty years, many types of neural networks have been extensively analyzed. The results have been
applied in signal processing, optimization computation and knowledge acquisition, etc.'' ="', Most neural networks
are classified into two categories: continuous-time or discrete-time. Recently there has been a somewhat new catego-
ry of neural networks, which is neither a purely continuous-time nor a purely discrete-time one; these are called neu-
ral networks with impulses. The third category of neural networks displays a combination of characteristics of both
the continuous-time and the discrete-time systems'®~'*'. Impulses can make an unstable system stable, so it has been
widely used in physics, chemistry, biology, population dynamics, industrial robotics, and so on. In this paper, the fol-
lowing class of impulsive neural networks will be studied:

dx, (1) .
Tdr =—ax,(1) +gi[./;bijxj(t) +Ii(t)] Osr#1 +ro (1)
x,(t +0) =8,,x,(1) t =t +rw

where i =1,2,...,nk=1,2, ..., myreZ, ={0,1,2, ...} and n denotes the number of neurons in the networks;

x;(t) denotes the average membrane potential of the i-th neuron at time #; a; >0 denotes the rate at which the i-th
neuron resets the state when it is isolated from the system; b;; represents the synaptic connection strengths among the
neurons; the function g, represents the response of the i-th neuron to its membrane potential and is known as the ac-
tivation function; /;(#) denotes a constant external input current to the i-th neuron, /,( +) is an w-periodic and Lips-
chitz continuous function, 0 =, <t, <... <t, <w; &y, is constant for fixed i, k, .

Throughout this paper, the activation functions g,(-) (i =1, 2, ..., n) are assumed to possess the following
property:

There exist constant scalars /; >0 such that for any u,veR

\gi(u) —gi(v)\$li\u—v\ i=1,2,...,n

Definition 1 Function x(#) = {x,(#),x,(f), ..., x,(£)}" € R" is said to be a solution of impulsive neural net-
works (1) if for all i =1,2,...,m;k=1,2, ....m;reZ :

(@ x,( +) is piecewise continuous on (#,,8) for some 3 > 1, such that x,(#, + rw +) and x(7, + rw —) exist and
x;( ) is differentiable on intervals of the form (7,_, +rw, t, +rw) C(t,,8);

@) x,(t) satisfies system (1) and x,(#) is right continuous at point ¢ = ¢, + rw.

Definition 2 The impulsive neural networks (1) is said to be globally exponentially periodic, if system (1)
has a periodic solution x” (f) and there exist positive constants «, 8 such that any solution x(7) of (1) satisfies

lx(2) —x" (1) [|<ellx(0) —x"(0) e =0
Lemma 17" Suppose f(¢) is a differentiable function defined on R, . Then the upper right Dini derivative
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D* | D | exists and has the following form:
D Iftn | = Tim LD =L sy rer

i .
in which
fi/lfin | i =0
B if f(1) =0 and f{1) >0
SN =4 _4 if f(1) =0 and (1) <0
0 if f(1) =0 and f(1) =0

2 Main Results

In this section, it will be shown that under certain conditions system (1) has a unique periodic solution which
is globally exponentially stable.

Theorem 1 For every periodic input I(f) = {I,(t), L,(1), ... I,()}", I(t + w) =I(t), the impulsive neural
networks model (1) has a unique globally exponentially stable periodic solution x* (7), if there exist constants A, >
0,i=1,2, ..., n such that

n

A;
a; >y Tl,.\bl_j\ (2)
J

=
and
1§, 1<1  i=1,2,...mk=1,2,...mreZ, (3)
Proof Let u(?) and v(t) be two solutions of system (1), it follows from (2) that there exists an & >0 such
that

n

llzlilgl{ai &~ z )‘7[[1 ‘ bij ‘ } = 771 > 0 (4)
<is< ~ .

We consider a Lyapunov function V(¢) = V(¢, u(t) —v( t))' defined by
V(r) = egtHu(l‘) —-v(1) H()\,w) =¢e” 1n<]za<)§1 ‘ A(u (1) =vi (D) ‘ = egt)\io ‘ uio(t) _V,‘U(t) ‘
where i, € {1,2, ...,n} is a function of the time Vari\able t.
We first calculate the derivative of V(r) along the solutions of system (1). At t#¢, + 1w,
D'V(1) =ee”A, |u, (D) —v, (D) | +e"2, D" |u, (1) —v, () | < V(1) +

o o 0

Jj=1

n lin
e [ =ay L0 =v, 0 |+ 3 by [ T —vn | ] <
J

A
[ —a, te+ Z )\lolio ‘bio,' ‘ ]V(t) <-n V(0 (5)

Jj=1 J

Next, at t =1, + rw,
V(1 +0) = V(1) = e A, [ |u, (1 +0) =v, (1 +0) | = [u, () =v, (D) |] =
)\ioegt( ‘Sikr [ -1 | u (1) —v, (1) | =( ‘6ikr -DV(n) <0 (6)
From (5) and (6) we have V(#) =e”[lu(?) =v(D) [, ., <V(0) = [u(0) —=v(0) [, .., i.e.
lu(r)y =v(t) sy < € Nu(0) =v(0) [, . V=0 (N
To prove that the impulsive neural networks model (1) possesses an w-periodic solution, we define a mapping

P:R"—>R" by Pu(0) =u(w) =u,. Choose a positive number m such that m=1n3/(ew), where ¢ is the number de-
fined in (4). It follows from (7) that

o 1
1P"u(0) = P"v(0) [l ) = llu(me) =v(mw) |, ., < e [u(0) =v(0) |, .., < FNu(®) —v(0) |, .,

m

The above formula says that P” is a contraction mapping on R". According to the Banach contraction mapping prin-
ciple, P" has a unique fixed point x € R". Since
P"(Px) =P(P"x) = Px

it means that Px is also a fixed point of mapping P". From the uniqueness of the fixed point, we know Px =x,i.e. ,
x is also a fixed point of mapping P.Let x* (f) denote the solution of (1) with x as its starting point, then

x7(0) =x=Px=x"(w), x"(t+w)=x"(1)  Yi=0 (8)
That is to say, x” (f) is an w-periodic solution of (1), and also from (7), we know it is globally exponentially sta-
ble.

Remark In the proof of theorem 1,
D" max | A, (u,(1) —v() | = lim%(lm_ax [ACu(t+h) =vi(e+h)) | - max [u,(6) —vi(0) |)
h—0* <isn <isn

I<isn
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Now suppose max | A,(u,(t+h) =v,(t+m) | =X, [u,(t+h) =v,(1+h) |, since | A,(u,() =v,(0) [(i=1,2,
., n) are all continuous functions, we have
max | A (u, (1) =vi(0) | =x, Tu (5) =v, () | =X, Lu (1) =v(2) |

I<i<n
although the above may be not true for k =i,. At this time, we only need to take i, =k, and the proof in theorem 1
about the Dini derivative still holds.
Theorem 2 For every periodic input I(f) = {1, (1), L,(1), ..., I,(t)}", I(t + w) =1(t), the impulsive neural
networks model (1) has a unique globally exponentially stable periodic solution x * (7), if there exist constants A, >
0,i=1,2, ...,n such that

mlna >

I<isn

(9

IO
izl j=1 A
and
160 | <l i=1.2,omk=12 .. mreZ, (10)
Proof Let u(f) and v(t) be two solutions of system (1), it follows from (9) that there exists an & >0 such
that

n n

Y
2 ming, —e -2 | Y Y )T’l,.zbfj =n, >0

Isisn iD= A

We consider a Lyapunov function V(¢) = V(¢t, u(t) —v(t)) defined by
1 . n )
V() = e T A0 = vi(n)

Calculating the derivative of V() along the solutions of system (1) and using the Cauchy-Schwarz inequality, we
have

B = o0 +e T a0 =00 + (0D =v0) [80F b0 +10) -

n

( by () +1(0) )]} <evn —e"’i/\iai(u,-(t) —vi(1)* +

. n n /\,‘ )
"2 Vi [u () =vi(0) | 21 0 s T/ () =vi(D | < (e =2 mina) V() +
i= J= J

e“/ZlAiufU)-vf(f)ZJZ(iﬁbyliﬁu,u)—w(o) <

(¢ -2 mma)V(t) et J2V(1) Z ( z —bzlz) ( g/\j(uj(t) —vj(t))z) =

ijvi

I<isn

n n

Yy —bf“ )V(t) -V tEL e (11)

i=l j=1 ,

(3 —2 mina; +2

I<isn

Next, when ¢ =¢, + rw, then

V(1 +0) - V(1) =%e“_2m<u,-(r +0) —v,(1 +0))? —%e”ZA,(ui(r) —v(1)? =
1

n

5" X A8, — Du(n) —v(1))* <0 (12)
From (11) and (12), we have V(1) =€ [[u(t) =v(1) [\, <V(0) = [u(0) =v(0) ||, ».i.e.,
lu(r)y =v(0) 10 <e ™ [u(0) =v(0) [, ., (13)

The remaining part of the proof is similar to that of theorem 1 and is omitted.
Corollary 1 For every periodic input I(¢) ={/,(t), L,(?), ..., I, (1) }',I(t + w) =I(1), the impulsive neural
networks model (1) has a unique globally exponentially stable penodlc solution x " (7), if

a; > z I, | b,
j=1
Corollary 2 For every periodic input I(#) = {I,(#),L(t), ...,I,(¢)}",I(t + ) =I(t), the impulsive neural
networks model (1) has a unique globally exponentially stable periodic solution x* (¢), if

s, <1 i=12,..,mk=12...mrel,

mina, >

I<isn

22119,,, 16, <1 i=1,2,...mk=12,...mreZ,
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When §,, =1 forall i =1,2,...,n;k=1,2, ...,m;reZ,, the impulsive neural networks (1) will become con-
tinuous neural networks:
dx, (1) . .
L = ax( +gi[/2=1b,jxj(t) +1.(1) t=0;i=1,2..n (14)

and the dynamics of system (14) have been extensively studied in Refs. [12 — 14]. From theorem 1 and theorem 2,
we have the following corollaries.

Corollary 3 For every periodic input I(#) ={[,(#), ,(t), ..., [, () V', I(t +w) =I(1), the neural networks
model (14) has a unique globally exponentially stable periodic solution x * (7), if there exist constants A; >0,i =1,
2, ..., n such that

n

A
a >y T b, |
i=1 74
Corollary 4 For every periodic input I(t) = {I,(t), L, (1), ...,I,(t)}", I(t + w) =I(t), the neural networks
model (14) has a unique globally exponentially stable periodic solution x * (), if there exist constants A, >0,i =1,

2, ..., n such that

mina; >

I<isn
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