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Auto-Backlund transformation and exact solutions
of Wick-type stochastic Burgers equation

Chen Bin

(Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, China)

Abstract: Burgers equation in random environment is studied. In order to give the exact solutions of random
Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the
Burgers equation with variable coefficients by white noise W(¢) = B,, where B, is a Brown motion. The auto-
Bécklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown
by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers
equation is also studied.
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This paper is devoted to the exact solutions of the Wick-type stochastic Burgers equation as the following

form:
U +f)UOU, +g(t)U,, =W() OR®(t,U, U,, U,,) (1)
which is the perturbation of the Bergers equation with variable coefficients
u, +f(0)uu, +g(Hu,, =0 (2)

by random force W(f) OR(t,U, U,, U_). Where f(t) and g(¢) are bounded or integrable functions on R ,, W(¢)
is the Gaussian white noise, i. €., W(t) =B, and B, is a Brown motion, R(¢, u, u_, u ) =auu, +Bu,, is a function of
u,u, and u, for some constants o, 3 and R is the Wick version of the function R.

Random waves is an important subject of stochastic partial differential equation( SPDE). Many authors studied
this subject, e. g. , Konotop and Vézquez'", Chen and Xie"> *', Morien"’, Xie'*™"", and so on. In Ref. [12], Holden
et al. gave white noise functional approach to research stochastic partial differential equations in Wick versions. As
Chen and Xie did in Refs. [2 —4] and Xie did in Refs. [6 — 11], we will give exact solutions of the stochastic Wick-
type Burgers equation (1) by the Hermite transform and the homogeneous balance principle. When a =8 =0, we get
the exact solutions of the variable coefficients Bergers equation (2). The homogeneous balance principle which was
given by Wang in Ref. [ 13] has been widely applied to derive the nonlinear transformations and exact solutions
(especially the solitary waves), and auto-Bicklund transformations as well as the similarity reductions of nonlinear
partial differential equations (PDEs) in mathematical physics. These subjects have been researched by many au-

thors, such as Wang[”] ,et al.
1 Soliton Solutions of Stochastic Burgers Equation

In this section, we will give exact solutions of Eq. (1) by theorem 2.1 of Chen and Xie'” with d = 1. Taking
the Hermite transform of Eq. (1), we get
U(t,x,2) +f()U(t,x,2) U (1,x,2) +&() U (1,x,2) =W(1,2) [aU(1,x,2) U, (1,x,2) +pU. (1, x,2)] (3)
Let a(t,z) = (f(t) —aW(t,2)) and B(t,z) = (g(£) —BW(1,2)), Eq.(3) can be written as
U(t,x,2) +a(t,2) U(t, x, 2) U (1,x,2) +B(t,2) U, (1,x,2) =0 (4)

where the Hermite transform of W(7) defined by W(1,z) = Y ()2, ,2=(2, 2, ...) € C"* is a parameter. We
k=1

first solve Eq. (4).
Put v(t, x, z) = U(t, x, 7). For any ze C~*, according to the idea of the homogeneous balance principle we sup-
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pose that the solution of Eq. (4) is the form
v(t,x,2) =A F'(o(t,x,2)) @ (1, x,2) +A, (5)
where A, and A, are the constants, F(¢) is a function of one variable only, F(¢) and ¢ are to be determined later.
From Eq. (5), we have
v, +alt, 2)w, +B(t, 2) v, =A [Aa(t, ) F'F" +B(1, 2) F"] @) +Aja(t, 2) (F) .0, +
AF' o0, +Aa(t, @] +3A8(1, DF'p0,, +A F' [ o, +Asa(t, 2) @, +B(1 2 @, ] (6)
Let
Aa(t,2) F'F" +B(t,2) F”" =0 (7)
Then the solution of Eq. (7) is
F(¢p) =Klng (3)
where we suppose KA, a(?,z) =2B(t,z) and K #0 is any constant. Hence, we have

1(141
vt +a(t’ Z)va +18(t’ Z) vxx :?{QD[QDM +A2a( [’ Z)gox,\' +B(t’ Z)qowcx] _ng[th +A2a( [’ Z)ng +B( t’ Z)goxx] } (9)

For any fixed z e C"*, we have the Bicklund transformation of (4) as follows:
v(t,x,2) =KA,(Ing) . +A, (10)

gp[qoxt +A2a( t’ Z) Dix +B( t’ Z) gpxxx] - ng[th +A2a( t’ Z) (/2 +B( t’ Z) qoxx] :O ( 11)
Using the Bécklund transformation (10) and (11) we can obtain the solitary wave solutions of (4). In fact, suppose
that Eq. (11) has the following solution:

o(1,x,2) =p(t,2) + Y expl(1,x,2)] (12)
j=1

J
where (1, x,2) =q;()x +1,(t,2) +n,,q,(1),r,(t,2),j=1,2,..., N will be determined later, n;,j =1,2, ..., N are
arbitrary constants. Then we have
QD[(P,W +A2a(t’ Z)(Pxx +B(t’ Z)goxxx] _(px[()or +A2a(t Z)¢X +B(t Z)QDX,\]

N N
0, g, ar; d 0 .
Y[~ La +p(% 44, %0 4 Aaq” +B4) | +PZ g et 4 P

i=1 ot Toot T ot bot
N
ar, , 09, ar, eliti
j,12='1( _qj'a _Azaq]"b -Bq,q9; + E +q, — Py +A2“‘]1 +4; ) ’ (13)
9a.
Since e%/, xe”/, """ and xe”/*"! are linear independence, we have % =0 forj=1,2,...,N, thatis ¢;,j=1,2, ...,

N are constants. These yield

0 ar,
~Pa +p( a5, +Asag +pa, ) =0 (14)
and
% % 2 2 2y _
or ot (CIj -4, +A2a(qj' -4, +,3(q/' _%)(q/' -q,7) =0 (15)
Eq. (14) implies
1oap _ 37 2
Dot ot +A2aqj‘ +09; (16)
and for j#/, Eq. (15) yields
ar; or
(?;_?;) =A,a(q, _CIj) +,8(q12 _qj'z) (17)
Choose r,(t,z) =r(t), by (16) and (17) we have, for j =2,3, ..., N
p(tz) = COCXp{j [7'(s) +A,q,f(s) +Cﬁg(s) - (aA,q, +,BCI?)FW(S’Z)]dS} (18)
0
r_j(ts 7)) = Jo[r'(s) +A2‘11_;f(5) +‘I2_/g(5) _(OlAqu_/ +BQ2[)W(S, 2)1ds +t‘j (19)

where q,; =q, —q,, q,; = q," - qu, C, and Z‘j,j =1,2, ..., N are constants.
From Egs. (10), (12), (18) and (19), the solution of Eq. (4) is given by
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KA, 2 qjexp[¢,j(t’ X, 2) ]
v(t,x,7) = = +A, (20)
p(t,z) + Zexp[tpj(t,x, 2) ]
i=l
where
(1, x, 7) = q;x +J0 [7'(s) +A2¢11,f(s) +CI2jg(s) _(C\’Aqu +BQ2j)W(S7 z)1ds +7; (21)

By (18),(20), (21) and the definition of W(t, z), it is easy to prove that there exists a bounded open set G
CR, xR, ¢ >0 and r >0 such that v(¢, x, 2), v,(¢, x, 2), v,(¢, x, z) and v_(¢, x, z) are uniformly bounded for (7,
x,2) € Gx K, (r), continuous with respect to (7, x) € G for all ze K, (r) and analytic with respect to z e K, (r)
for all (7, x) € G. Theorem 2. 1 in Ref. [2] implies that there exists U(z, x) e (S) _, such that v(¢, x, z) = (. ZU(t,
x))(z) for all (#,x,z) € GxK,(r) and that U(t, x) solves Eq. (1). From the above, we have that U(¢, x) is the
inverse Hermite transformation of v(¢, x, z) . Hence, by (18), (20) and (21) we have a stochastic solitary solution
of (1)

N

KA, z qj'expo[lpj(ts x) ]
U(t,x) = J=1 +A, (22)

pe(n) + Y exp’ [ W (1,0)]

where

V0 =g+ [ [7G) +Aa,f(9) +a8(s) — (adag, +Ba,) W) 1ds +m, =
45+ [17() + A f(5) +q,8(9)1ds - (ahagy, +Ba) B, +n, (23)
P () = Gexp” {[1r(9) + 4. (5) +a8(9) - (Ba} +adua) W(s)1ds) =
Coexp® { [ 17'(5) + A, f(9) +a,%8(5)1ds — (aaq, +Ba)B,} (24)

Since epr(B,) = exp(B, —%tz) (see lemma 2. 6. 16 in Ref. [12]), Egs. (22), (23) and (24) yield the solution
of Eq. (1)

N
KA, Y gexpl ¥(1,x)]
U(t, x) = = +A, (25)
p(1) + Y, exp[ ¥(1,%)]
Jj=1
where
T2 = qx + [ 17 +A4,0,/09) +0,8(9)1ds = (adsa, +B0) (B, - 5+)+,
and

p() = Coexp{ [ 17(5) +Aaquf(9) +a,°8(5)1ds = (aagy +Ba) (B, — 7))

2 Generalizations

Using the method in section 1, we can get the exact solutions of the following the Wick-type stochastic Bur-

gers equation
U +H(t) QUQU, +G(1) U, =0

where H(t) and G(¢) are white noise functions. Readers can do this easily.

When « =8 =0, the exact solutions of the variable coefficients Burgers equation (2) are given by Eqgs. (22),
(23) and (24).

In section 1, we only discussed SPDEs driven by the Gaussian white noise. From a modelling point of view
one might feel that this is too special. One can easily envisage situations where the underlying noise has a differ-
ent nature. It turns out, however, that there is a close mathematical connection between SPDEs driven by Gaussian
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and Poisson noise, at least for Wick-type equations. More precisely, there is a unitary map between the Gaussian
white noise space and the Poisson white noise space, such that one can obtain the solution of the Poisson SPDE
simply by applying this map to the solution of the corresponding Gaussian SPDE. A nice, concise account of this
connection can also be found in section 4.9 in Ref. [ 12]. Hence, we can get stochastic soliton solutions if the co-
efficients f(t) and g(¢) are perturbed by the Poisson white noise in Eq. (2).
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Wick B4R 41 Burgers 77 #2 Y B Bicklund 3% #0045 i i
%W

(BRMIFFE R FRF R 4R 221116)

E . BT T ALERIE 7 69 Burgers 7y #2. 4 T 4 b AL Burgers 7 #2 69 45 74 #L, R it % £ 4 Bur-

gers FAZM A2 G F W(t) = B(t) #3134 Wick & K4 4t Burgers 7 42 (B (1) & Brown ia
), A B F kT4 R A= Hermite T #2517 Wick & AL Burgers 7 #2649 @ Bécklund % #: = [
HUIN T A 6 A A0 F A X, B B LA 0 T — AR B 69 Wick A AL Burgers 7 £2.

K7 : Wick A AL Burgers 7 42 ; B Bécklund % # ; M AUIN 5 F #f ; & %% 5 ; Hermite T 3% ; F 1 -F
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