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Abstract: A global optimization algorithm ( GOA) for parallel Chien search circuit in Reed-Solomon (RS)

(255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field

(GF) multipliers and pre-computing the common items, the GOA can reduce the number of XOR gates

efficiently and thus reduce the circuit area. Different from other local optimization algorithms, the GOA is a

global one. When there are more than one maximum matches at a time, the best match choice in the GOA has

the least impact on the final result by only choosing the pair with the smallest relational value instead of

choosing a pair randomly. The results show that the area of parallel Chien search circuits can be reduced by

51% compared to the direct implementation when the group-based GOA is used for GF multipliers and by 26%

if applying the GOA to GF multipliers separately. This optimization scheme can be widely used in general

parallel architecture in which many GF multipliers are involved.
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Forward-error correction ( FEC) codes used in
long-distance optical communication systems should
provide significant coding gains with a high code rate
and moderate complexity. In ITU-T G. 975, the Reed-
Solomon (RS) (255, 239) code has been standardized
to resist burst errors for optical fiber submarine cable
systems. With only about 7% overhead, this RS code
can not only provide approximately a 6 dB coding gain
at random errors correction, but also correct bursts of
lengths up to 64 bits.

To increase the decoding throughput, various par-
allel decoders!' "® are derived by developing parallel
architecture for various building blocks. Among the
three major building blocks of the RS decoder, i. e.,
syndrome generator unit, key equations solver and the
Chien search block, the parallel Chien search block is
the most area consuming unit'” . It occupies more than
65% of the logic core for both 10 and 40 Gbit/s FEC
devices. Therefore, how to develop a low complexity
parallel Chien search circuit for high throughput RS de-
coders is of great interest and is considered in this pa-
per.

1 Parallel Chien Search Architecture for RS
Decoder
Consider an RS(n, k) decoder with a block length

of n bits, k information bits. After syndrome calculation
and solving the key equation, the error locator polyno-
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mial g(x) and the error value polynomial w(x) can be
found. Then determining the error locations from ¢ (x)
and the error values at these locations from w(x) is the
last step in decoding an RS code. The Chien search al-
gorithm can effectively determine the error locations by
finding out all the roots of the error locator polynomial
o (x). Normally, the Chien search algorithm checks
whether o (') =0 for 1<i<n.If o(a') =0, it means
that an error is found at @~ '. Then, the corresponding
error value e can be calculated using the Forney algo-
rithm as
w(x) —i

T 44 (X) -«

where o, is the odd term of o (x).

A typical Chien search circuit is shown in Fig. 1.
Since all the possible locations have to be evaluated for
the o(x), normally, it takes n clock cycles to complete
the Chien search process for an RS(n, k) decoder. For
example, for the RS(255,239) decoder, it will take 255
cycles to complete the Chien search.

To speedup this search process, the parallel Chien
search architecture that evaluates several locations per
clock cycle is essential. Supposing that p stands for the
parallel factor, then a parallel Chien search architecture
with a parallel factor p can reduce the searching cycles
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Fig.1 Typical Chien search circuit
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for error locations from n down to L n/p J . For ex-
ample, a parallel Chien search architecture with p =4
can find four roots per cycle and thus can complete the
total searching after n/4 cycles.

Fig. 2 is a parallel Chien search architecture for an
RS(n, k) decoder, where parallel factor p =4. In addi-

tion to the four polynomials o (a&'™'), o (a'*?),

) and o (a'™), four odd terms o ('),
i+3

i+3

ola
O-Udd(ai+2)3 Oue (@) and O-Odd(ai+4) which are
needed in determining the error values with the Forney
algorithm are computed simultaneously to facilitate the
implementation of error correction.
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Fig.2 Parallel Chien architecture for RS decoder

Obviously, the parallel Chien search architecture
has a larger area compared to the conventional serial
architecture. Supposing that the parallel factor is p, a
parallel architecture for an RS(n, k) decoder has exact-
ly (p xt) 8-bit constant Galois field (GF) multipliers,
3 x p 8-bit GF adders, ¢ 8-bit registers and ¢ 8-bit multi-
plexes, where 2¢ =n — k. Thus how to optimize the par-
allel Chien search architecture in the area reduction is
important for the high-speed RS decoder. It has been
found that the only operation required for constant
multiplication is modulo 2 addition. Hence, we can de-
fine the computational complexity as the number of
XOR gates included in the GF constant multipliers. In
the next section, an optimization algorithm that can re-
duce the complexity of a GF constant multiplier is dis-
cussed in detail.

2 Complexity Reduction Scheme for GF
Multiplier

In this section, a novel optimization algorithm for
a GF constant multiplier is proposed. In Ref. [8], an al-
gorithm has been proposed to optimize the area of an
RS encoder by up to 35% compared to straightforward
implementation. However, the algorithm gave only the
local optimization and did not guarantee a globally op-
timum solution. In this paper, a global optimization al-
gorithm (GOA) is proposed to reduce the complexity
effectively. The same as the algorithm in Ref. [8], the
GOA is also an iterative algorithm, in which the fre-
quently appearing XOR-additions are found and pre-

computed. Different from Ref. [8], however, if there
are more than one matching pairs with the maximum
matching value, the pair with the smallest relational
value is chosen as the best match. Below, we will give
GOA in detail.
2.1 Global optimization algorithm
Consider a constant multiplication in GF (2"),
where M is the product of fixed element o' with varia-
ble field element B = {b,, b,, b,, ..., b, }. Without loss
of generality, we assume a' =a® = (10111000), then we
can describe M as
M=a'B=a’[b,a’ +bsa’ +... +b,] =
b, +b, +bs + by
b, +bs +bs + b,
b, +b, +b, +bs +b,
b, +b, +b; +b,
by +b, +b, + b
b, +b, +b; +b,
b, +b, +b,
by +b, +bs
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A straightforward realization of the above constant
multiplier requires 23 XOR gates. However, there are
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many redundant modulo 2 additions that allow a reduc-
tion in the number of operations. For instance, the sum
b, +b, in Eq. (1) appears in rows 1, 3, and 4, respec-
tively. A straightforward implementation would com-
pute it three times. If the frequently appearing pairs can
be pre-computed, the redundancies will be eliminated
and the hardware area will be reduced.

Different from the local optimization algorithm in
Ref. [8], the GOA is a global one that consists of the
following four steps:

Step 1 For any column i and j in matrix e,
find all the possible pairs with bit-wise matches greater
than 1;

Step 2 Choose the pair (pairs) with the maxi-
mum bit-wise matches; if there are more than one such
pairs, choose the one with the smallest relational value
as the best match; if these maximum matches have the
same relational value, choose a pair randomly;

Step 3 Eliminate the redundancy from the best
match; append an additional column at the right of the
matrix to hold the redundancy;

Step 4 Repeat steps 1 to 3 for all the columns in
the matrix including the appended columns until no im-
provement is achieved; i. e., the best match is not
greater than 1 bit.

After the 4-step optimization, the most frequently
appearing XOR additions are chosen and pre-compu-
ted. This will reduce the number of XOR gates and de-
crease the complexity of the GF constant multiplier.

Below, we give the definition of the relational
value for a maximum match. Suppose in an iteration, m
pairs b, ;, b, 5, ---» by, ;, are found with the same
maximum bit-wise matches and the symbol col; & col;
denotes the operation result of bit-wise matches for
column i and j, then R, ,,, the relational value of maxi-
mum match b, ;, is defined as

R, ;, =(col, &col, &col,; &col;) +... +

(col, &col, &col, &col,) +... +
(col;, &col;, &col,, &col,)
where ig #ir, jg #jr.

This means that if a matching pair has the mini-
mum relational value and is chosen as the best match
in the current iteration, it will have less impact on the
next iteration optimization.

Below, we will take Eq. (1) as an example to ex-
plain the GOA. When applying the GOA in Eq. (1), in
the first iteration, three matching pairs b, , = b, + b,,
by,=b; +b,,and b, s = b, + b are found with the
maximum matching bits of three, and their relational
values are Ry, =2, R, , =2, and R, ; =2. Since they
have the same relational value, b, , is selected random-
ly as the best match. Similarly, in the second iteration,

10 pairs b, 5, b, 5, by 6, b, 75 by 5, by 5, by 45 bs 4, bs ;and
bs , are found with maximum matching bits of two. A-
mong them, b;, has the smallest relational value of
three, so it is chosen as the best match. In the next iter-
ation, i.e. the third iteration, there are totally eight
pairs b, 5, by 5, by, by 7, by 5, bs g, bs 5, and by, with
maximum matching bits of two. Since R, ; =3 is the
smallest relational value, b, ; is chosen as the result of
this iteration. In the same way, b, ¢ and b, , are chosen
as the best matches in the next two iterations, respec-
tively. In the last iteration, only one pair b ,, is found
and the algorithm ends.

After six iteration steps, six common XOR addi-
tions are found: b, +b,, b; +b,, b, +b;, b, + by, b, + b,
and b + b,,. By pre-computing them, the production
matrix M can be written as

((by +b,) +bs) +bg
(b, +bg) +bs +b,
(by +b;) +(bs +(b, +b,))
M: (b0+b4) +(b1+b3) (2)
(b, +bg) +b, +b,
(b, +by) +(b, +b;)
b, +(by +b,)
(by +b,) + by

It is easy to see that the number of XOR gates is
reduced to 16 compared to the straightforward imple-
mentation that requires 23 XOR gates.

The advantage of the GOA is that when there are
multiple maximum matches at a time, the best matching
choice in each iteration has the least impact on the fi-
nal result since the GOA only chooses the pair with the
smallest relational value instead of choosing a pair ran-
domly. Therefore, the GOA is a global optimization al-
gorithm while the algorithm in Ref. [8] is a local opti-
mization solution.

2.2 Group-based optimization

In fact, the GOA can be not only used in individu-
al GF multipliers, but also used among g multipliers,
where g ( >1) is the group size and g multipliers share
the same multiplicand. In this case, by searching fre-
quently occurring XOR-additions among g coefficient
matrices and pre-computing them, the number of XOR
gates is reduced efficiently. Obviously, in most cases
the results of optimizing multiple multipliers are better
than those of optimizing individual multipliers sepa-
rately. We call the optimization of multiple multipliers
group-based optimization.

As shown in Fig. 2, the Chien search circuit is di-
vided into eight groups of multipliers, each correspond-
ing to a variable element ¢, (1 <i<8). One of the
groups with the multiplicands ¢ is shown in Fig. 3, in
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which four constant multipliers with constant multipli-
cands @*, a'’, @®* and a@” are included. Since the four
multipliers have the same multiplicand o, we can ap-
ply the GOA to the multiplier group.

e

Fig.3 Multiplier group of a® in parallel Chien search architecture

As given in section 2, let M,, M,, M, and M, de-
note the products of the variable field element B with
the constant elements o®, &', o*', @, respectively.

by +b, +bs + by
b, +bs +bs +b,
by +b, +b, +bs +b,
by+b, +b, +b,
by +b, +b, + b
b, +b, +b; +b,

b, +b; +b,

by +b, + by

b, +bs + b,

by + by
by +b, +b, + by
by+b, +b, +b; +bs + b,
b, +b; +b, +b;
b, +b, +bs + b
by +b; +bs +bs +b,
b, +b, +bs+b,
by, + b,
b, +b, +b,
b, +b, + b,
b, +b; +b,
b, + b,
bs + by
bs + b,
by + b,
by +b, +b, +b,
b, +b, +b;
by+b, +b, +by; +b, +bs + b,
by +b, +b; + by
by +b; +bs + b,
b, +b, +b,
b, + by
by + by + by

M, =a'°B =

M,=a"'B =

It is easy to see that the original numbers of XOR
gates of the four multipliers are 23,24, 11 and 22, re-
spectively.

First, the GOA is applied to the four multipliers
separately. After optimization, four groups of common
XOR additions (denoted as c¢;) are obtained:

M, ¢ =by+b,,c,=b,+b,,c;=b, +b,,

¢, =b, +bg,cs =b, +b;,cs =bs +

M, c¢ =b,+bs,c,=bs+bg,c;=by+c,,

c,=b,+c,c5=b, +b,,cc =b, +c,

M, c¢ =by,+b,,c,=b,+Db,

M, ¢, =by+by,c,=b, +bs,c;=b, +b,,

¢, =b, +b, +b, =c; +b,,
cs=by +by +by =c, +bg
Consequently, M, to M, can be written as

Cs + bg ¢, +b,
¢, +bs + b, c,
cs + ¢ by + ¢,
¢, +c; b, +b, +cq
M, = c, +b, +b, [ M, = cs + by +b,
C; +Cs ¢, +bg
b, +c¢, bs + ¢4
¢, + b cs +bg + b,
c, by + ¢,
¢, +b, b, +c,
b, +c, b, +c, +c5
c, +b, ¢, +c,
My=p b0 MeT v,
l75+b6 Cy
be + b, c,
by + b, Cs

As a result, the required numbers of XOR gates
for the four multipliers are reduced from 23 to 16, 24
to 16,11 to 9 and 22 to 11, respectively.

Now, if group-based optimization is used to the
multiplier group of o, the GOA will search all the
matches within the four matrices M, to M, and 16
common items are found:

¢, =by+b;, ¢, =b, +b,, c; =b, + b
¢, =bg+c,=by+by; +bs,c5 =b, +bs
ce=b,+c,=b, +b, +b;, ¢, =b, +b,
cg=b,+c;=b,+b, +bs, cg=b, +c,=b,+b, +b,
Co=by+cs=by;+b, +bs, ¢;,;, =b, +c, =b, +b; +b,
Cc,=bs+bg, ¢ =b,+c,=by +b; +bs +b,
Ccy=by+by,c5=b, +b,
Cio=by, +c,=by +b, +b; + b
Thus, M, to M, can be expressed as
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by + b + c5 b, +c,
c, +cp, by + by
cg +cyy by + ¢4
b, +c c, +cC
1 11 2 16
M, = , M, =
bg + ¢y b, +cy
c, +Cy5 b + ¢4
b, + ¢ by +cy;
Co bs + ¢4
c, by + ¢4
Cy b, +c,
b, +c, Cs +Cis
cy ¢, +c¢,
M, = , M, =
Cs Ci3
Cp Ce
bs + b, c,
Ciy Cy

Obviously, by sharing these common items with-
in the multiplier group, the number of XOR gates is
decreased significantly. It is not difficult to see that the
total number of XOR gates in the multiplier group of
o is now 38 compared to 52 in individual optimiza-
tion, both of which can save significant hardware area
compared to the straightforward implementation that
requires 80 XOR gates.

3 Optimization Results

By applying the group-based GOA to the parallel
Chien search circuit in RS(255,239) decoder, the op-
timized results in terms of XOR gates are listed in
Tab. 1.

Tab.1 Chien search complexity for RS(255,239) decoder
with parallel factor of four

Straight-  Individual optimization Group-based optimization
Groups forward No.of  Improve-  No.of  Improve-
implementation g eq ment/ % gates ment/ %

o, 30 26 13 14 53

o, 57 47 17 25 56

o, 72 54 25 30 58

T, 80 59 26 38 52

s 81 57 30 41 49

o 75 56 25 40 47

o, 78 57 27 43 45

Ty 80 52 35 38 52

Total

L 553 408 26 269 51

circuit

In Tab. 1, the number of XOR gates for eight
multiplier groups in the parallel Chien search circuit is
given separately. We can see that after group-based
optimization, the complexity of the Chien search cir-
cuit is reduced greatly compared to the straightforward
implementation. The total decrease of the Chien search

circuit can be up to 51% while the decrease is differ-
ent for each group. The maximum improvement of
58% is obtained in the group of o,. Generally the
more complex the original circuit is, the more im-
provement can be obtained.

On the other hand, as described above, the group-
based optimization can achieve better results compared
to the individual optimization. In the former case, the
improvement is about 51% while the reduction is only
26% in the latter.

4 Conclusion

In this paper, to reduce the hardware size of a
high speed RS decoder, a novel global optimization al-
gorithm is proposed. By applying a GOA to GF multi-
plier groups in parallel Chien search circuits, the result
shows that the number of XOR gates of the circuit is
reduced by 51% compared to the original design. The
result is also better than that of individual multiplier
optimization. It is worthy to point out that the decrease
of area consumption also helps to shorten the critical
path of the circuit. It is concluded that group-based
optimization techniques can be not only used in Chien
search architecture but also used in other parallel ar-
chitectures in which GF multipliers are used.
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