Journal of Southeast University (English Edition)

Vol. 22, No. 1, pp. 48 - 53

Mar. 2006 ISSN 1003—7985

Mining condensed frequent subtree base

Wang Tao

Lu Yansheng

(College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: In frequent tree pattern mining, the number of frequent subtrees generated is often too large. To tackle

this problem, the concept of condensed frequent subtree base is proposed. The base consists of the maximal

frequent subtrees for a series of support thresholds. It is a subset of frequent subtrees, and is used to approximate

the support of arbitrary frequent subtrees with guaranteed maximal error bound. In addition, an algorithm is

developed to mine such a condensed subtree base in a database of labeled rooted ordered trees. The algorithm

adopts the way of right-most extension to generate systematically all frequent rooted ordered subtrees. Several

techniques are proposed to prune the branches that do not correspond to the maximal frequent subtrees. Heuristic

techniques are used to arrange the order of computation so that relatively expensive computation is avoided as

much as possible. Experimental results show that the size of the base is less than 10% of that of the complete

set, and the algorithm outperforms the previous algorithms.

Key words: data mining; tree pattern; condensed subtree base

Recently, there has been growing interest in min-
ing databases of trees. In the database area, XML docu-
ments are often rooted trees where vertices represent
elements or attributes and edges represent element-sub-
element and attribute-value relationships; in Web traffic
mining, access trees are used to represent the access
patterns of different users''’. In this paper, we study
one important issue in mining databases of labeled
rooted ordered trees—finding frequently occurring sub-
trees.

In Ref. [1], Zaki presented an apriori-like algo-
rithm, TreeMiner, to discover all frequent embedded
subtrees (1i.e., those subtrees that preserve ancestor-de-
scendant relationships) in a forest or a database of
rooted ordered trees. In the apriori-like algorithm, a
candidate subtree is generated by joining two frequent
subtrees with smaller sizes. In Ref. [2], Asai et al. pres-
ented an algorithm, FREQT, to discover frequent rooted
ordered subtrees. In the algorithm, a candidate subtree
is generated by extending its unique parent, which is a
frequent subtree of smaller size.

However, because of the combinatorial explosion,
the number of frequent subtrees usually grow exponen-
tially with the tree size. Two consequences result from
this exponential growth. First, the end-users will be
overwhelmed by the huge number of frequent subtrees
presented to them and therefore have difficulty in
gaining insights from the frequent subtrees. Second,

Received 2005-03-22.
Biographies: Wang Tao(1969—), female, graduate; Lu Yansheng (cor-
responding author), male, professor, lys@ mail. hust. edu. cn.

mining algorithms may become intractable due to the
exponential number of frequent subtrees.

In Ref. [3], the concept of a condensed frequent
pattern base is proposed and can lead to an error-bound
approximation of frequencies of itemsets. In this paper,
we generalize the concept in tree pattern mining and
propose the notion of a condensed frequent subtree
base with guaranteed maximal error bound. Conden-
sing a frequent subtree base leads to more effective fre-
quent subtree mining. By computing a condensed sub-
tree base, the number of subtrees can be reduced dra-
matically, but the general information about frequent
subtrees still retains. A much smaller base of subtrees
certainly helps users comprehend the mining results.
Computing a much smaller subtree base also leads to
better efficiency.

We develop an efficient algorithm to mine such a
condensed subtree base from tree database directly. Our
results show that computing a condensed frequent sub-
tree base is promising.

1 Problem Definition

A tree is an acyclic connected graph'*'. In this pa-
per, we focus on ordered labeled rooted trees. A tree is
denoted as #(v,, N, L, E), where (D) v, € N is the root
node; (2) N is the set of nodes; (3 L is the set of labels
of nodes, for any node u e N, L(u) is the label of u; @
E is the set of edges in the tree. Please note that two
nodes in a tree may carry the identical label.

If (u,v) is an edge in the tree, then u is the parent
of v and v is a child of u. For nodes u, v, and v,, if u is

Mining condensed frequent subtree base 49

the parent of both v, and v,, then v, and v, are siblings.
A node without any child is a leaf node, otherwise, it is
an internal node. In general, an internal node may have
multiple children. If for each internal node, all the chil-
dren are ordered, then the tree is an ordered tree.

Given a tree #(v,, N, L, E), tree t'(v,’, N', L', E")
is called a subtree of ¢, denoted as ' Ct, if 1) N'CN;
@) for any node ue N, L(u) =L'(u); @ E'CE.If ¢
is a subtree of ¢, then 7 is called a supertree of #'.

Let D denote a database where each transaction s
e D is a labeled rooted ordered tree. For a given pat-
tern ¢ (where ¢ is a labeled rooted ordered tree), we say
t occurs in a transaction s if ¢ is a subtree of s. Let
o,(s) =1 if t is a subtree of s, and 0 otherwise. We say
s supports pattern ¢ if o,(s) is 1 and we define the sup-
port of a pattern ¢ in the database D as sup (t)

= 2 o,(s) . A pattern ¢ is called a frequent subtree if

seD

its support is greater than or equal to a minimum sup-
port threshold min _ sup specified by a user. The fre-
quent subtree mining problem is to find all frequent
subtrees in a given database. The set of all frequent
subtrees is called a subtree base, or ST _base in short.

It is often expensive to find the complete set of
frequent subtrees, since an ST _base may contain a
huge number of frequent subtrees. In this paper, we
propose to overcome the difficulty caused by “huge
amount of frequent subtrees” as follows: we compute a
smaller set of frequent subtrees, i. e., a “condensed
ST _base”, and then use it to approximate the supports
of arbitrary frequent subtrees.

Problem statement Given a tree database, a
support threshold, and a user-specified error bound £,
the problem of computing a condensed ST _base is to

find a subset of frequent subtrees 8 and a function fﬁ

such that the following holds for each subtree t:
0 if ¢ is infrequent

jﬁ(nH = {[Suplbv Sup,,] s. t. supy, Ssup(7) <sup,,
and sup,, —sup,, <k if ¢ is frequent

The function J,B is called a (support) approximation

function, and the set 8 is a condensed ST _base w.r. t.

2

2 Constructing a Condensed ST _Base Using
Maximal Rooted Ordered Subtrees
Intuitively, we are going to construct a condensed

ST _base consisting of maximal frequent subtrees for a
series of support thresholds. More specifically, given a

support threshold min _sup and error bound k, we di-
vide the set of frequent subtrees into a number of dis-
joint subsets: (1) The set of subtrees with support in
the range [min_ sup, min_ sup + k], 2) Those with
support in the range [min_sup + k + 1, min _sup + 2k
+ 1], etc. The i-th subset contains those subtrees with
support in the range [min _sup + (i —1)(k +1), min _
sup + ik +i—1] where 1<i<(|D| +1 —min_sup)/
(k+1).

Given a frequent subtree, we can approximate its
support with the maximal error of k, by determining
which subset the subtree belongs to. To determine
which subset a subtree belongs to, we only need to re-
cord the maximal subtrees at various layers w. r. t. the
lower bounds of supports of the ranges.

We now generalize the ideas by providing the
definition of a condensed ST _base.

Definition 1 Maximal frequent subtree

A frequent subtree 7 is a maximal frequent sub-
tree if none of its supertrees is frequent.

Definition 2 Given a database of labeled rooted
ordered trees D, support threshold min _sup and error
bound £, let the number of levels be

ID| +1 —min _sup
n_level =
k+1
Define
min _sup, =min _sup

min _sup, =min_sup +k + 1

min_sup, =min _sup + (i —1)(k+1)
for 1 <i<n_level

isn_level

U M, is called an M _base, w. r. t. the
i=1

Then, B,, =

approximation function £ defined below. Here M, is
the set of maximal subtrees w. r. t. support threshold
min _sup,.

Definition 3 Given an error bound k, an M _
base B,,, and a subtree z, let

0 if there exists no t' € B, s. t. t' 2t
[sup(?), sup(1)] if teB,
¢ = [m, m+k] if t¢ B,,, where m =
max{sup(?’) | t' €B,,,t' Dt}

It can be seen that each M _base B,, is a con-
densed ST _ base w. r. t. function £. In essence, for
each given subtree ¢ we find the supertree ¢’ of 7 in B,
having the largest support, and use the range of the
support for ¢' as the estimate of the support of .

The remaining problem is how to find the maxi-
mal subtrees efficiently in the condensed ST _ base
B,,. The algorithm we adopt proceeds in a manner like

50 Wang Tao, and Lu Yansheng

CMTreeMiner proposed in Ref. [5].

A subtree ¢t can be extended to ¢’ by adding a
new vertex, the vertex can be at different locations, ¢
is called a parent of ¢', ¢’ is called a child of ¢. In this
way a subtree can be generated from different parents
that will result in redundancies. There is a more clever
way to extend subtrees found by Asai et al. ™. In
Asai, et al. ’s algorithm, each candidate subtree is
generated at most once (and, therefore, redundancies
are avoided) from its unique parent. The parent of a
subtree is uniquely determined by removing the right-
most vertex of the subtree, where the rightmost vertex
of a tree is defined as its last vertex according to the
depth-first traversal order. We can systematically gen-
erate all frequent rooted ordered subtrees in this way.

Definition 4 Right most extension

The rightmost vertex of a tree ¢ is defined as its
last vertex according to the depth-first traversal order.
The rightmost path of ¢ is defined as the path from the
root to the rightmost vertex of . When extending a
frequent subtree ¢, an additional vertex w is added as
the rightmost child of one vertex on the rightmost path
of ¢ (and therefore w becomes the new rightmost ver-
tex). We call this kind of restricted extension as right-
most extension.

Definition 5 For a frequent subtree ¢, we define
the blanket of # w. r. t. a support threshold x, denoted
by B(t, x), as the set of immediate supertrees of ¢
whose support is not less than x, where an immediate
supertree of 7 is a supertree ¢’ of ¢ that has one more
vertex than 1.

Definition 6 For a subtree ¢ and one of its im-
mediate supertrees ¢’ € B(t, x), we can add a vertex w
to z to get t'. We use '\t to represent the additional
vertex w in ¢’ that is not in ¢. Please notice that ¢ \¢
represents not only the vertex label of w, but also its
position, i. e. , which vertex is w’s parent and w’s or-
der among its siblings.

Definition 7 For a frequent subtree ¢ and one of
its supertrees t' € B(t, x), the vertex ¢’ \t can be at
different locations. According to whether ¢\t is the
rightmost vertex of t* we divide B (¢, x) into two
parts: the left-blanket B, (#, x) and the right-blanket
B, (2, x) . For every t' € B, (¢, x),t"\t is the right-
most vertex of ¢'. For every t' € B, (t, x), t'\t is not

right

the rightmost vertex of ¢'.
Based on definition 5, we have the following
lemma.
Lemma 1 Let 7 be a frequent subtree and i =

max {; | sup(7) =min _sup;}. Then, ¢ is maximal w.r.

t. min _sup, iff B(t, min_sup,) =).
3 Search Space Pruning

The final goal of our algorithm is to find only
maximal frequent subtrees at various layers. There-
fore, it is not necessary to grow the complete set of
frequent subtrees. Can we prune some unpromising
subtrees as early as possible? We have the following
definitions and theorems.

Definition 8 Occurrence-matching and transac-
tion-matching

If a subtree ¢ occurs in a transaction s, it can occur
more than once. We call each of them an occurrence of
t in the database. For ' € B(t, x), we define ¢’ and 7 as
occurrence-matched if for each occurrence of 7 in (a
transaction of) the database, there is at least one (there
may be more than one) corresponding occurrence of
t';we say that ¢ and ¢ are transaction-matched if for
each transaction s € D such that o,(s) =1, we have
o.(s) =1.

Accordingly, we define the following subsets of
B(t,x):

B™(t,x) ={t' eB(t,x) | t' and t are occur-

rence-matched }

B™(t,x) ={t' e B(t,x)\B®™(t,x) | ' and ¢ are

transaction-matched }

B (t,x) =B(t,x) \(B™(t,x) UB™(t,x))

Lemma 2 For a frequent subtree ¢, if there ex-
ists ' e By (¢, min_sup), then (D) ¢ is not maximal
and (2) for each 1" € B, (¢, min _sup), there exists at
least one supertree " € B\ (¢, min _sup).

Proof
=sup(t'). For the second statement, we notice that

The first statement is true because sup(r)

t'\t occurs at each occurrence of 7 so it occurs at each
occurrence of ¢”; in addition, '\t is on the left of the
rightmost path of ¢ so '\t will never occur in #".
Therefore, we can obtain the ¢” that satisfies the re-
quirement by adding ¢'\7 to ¢".

Theorem 1 For a frequent subtree ¢, if there ex-
ists #' e BLy (t, min _sup), then neither ¢ nor any #’s
descendants can be maximal, and therefore ¢ (together
with all £s descendants) can be pruned from the
search space.

Proof By inductively applying lemma 2 to ¢
and its children(for each " € B
have the claim.

vigh (1, MIiN_sup)), we

Theorem 2 For a frequent subtree ¢, if there ex-
ists 1’ € By, (, min_sup), and the parent of 7'\7 is v
(where v is a vertex on the rightmost path of ¢), then

we do not have to extend ¢ by adding new rightmost

Mining condensed frequent subtree base 51

vertices to any proper ancestor of v.

Proof Assume the preconditions in the theorem
hold, and there is a child " of ¢ that is obtained by
adding a new rightmost vertex "\ to ¢, where the par-
ent v' of "\t is a proper ancestor of v. Because v’ is a
proper ancestor of v, v is on the left of the rightmost
path of ¢”; in addition, because ¢'\t is a child of v, '\t
is also on the left of the rightmost path of #’. As a re-
sult we can construct a " e By (', min_ sup) by
adding ¢'\7 to " and obviously #” and ¢" are occur-
rence-matched. Therefore by theorem 1, neither ¢’ nor
its descendants can be maximal.

4 Order of Computation

To determine if a frequent subtree 7 is maximal
w.r. t. min_sup, (i = max{j \ sup(7) =min_sup;}),
we will have to compute B(¢, min _sup,) ; to determine
if a frequent subtree ¢ can be pruned from the search
space, we will have to compute B° (7, min_sup). As
we know, B (f, min_ sup,) = B (#, min_ sup,) U
B™(t, min_sup,) UB"(t, min_sup,).

Based on definition 8, we have the following
lemma.

Lemma 3 For a frequent subtree ¢, i =
max{j | sup(#) =min_sup,}, then B®(z, min_sup,)
=B (¢, min_sup) and B™ (¢, min_sup,) = B™ (¢,
min _sup).

Based on definition 8 and lemma 3, we know that
B(t, min_sup,) has three different subsets and B (1,
min _sup) is one of these three subsets. Now we study
in detail how to compute each of these three subsets
and show that their computational costs are different.

1) Compute B (¢, min_sup) i.e. B® (¢, min _
sup;)

For a frequent subtree #, each occurrence of ¢ has
some candidate supertrees for B° (¢, min_ sup). To
finally determine B°" (¢, min_sup), we compute the
intersection of these candidate supertrees from each
occurrence of f, because for a supertree t' e BOM(t,
min _sup), ¢'\¢ should occur with each occurrence of
t. We see that computing B°" (¢, min _sup) is not an
expensive operation: B (¢, min _sup) is just the in-
tersection of the candidate supertrees from all occur-
rences of ¢.

2) Compute B™ (¢, min_sup) i.e. B™ (¢, min _
sup,)

Computing B™ (¢, min _sup) is similar to com-
puting B°" (¢, min _sup), except that each transaction,
instead of each occurrence, has its candidate supertrees
for B™ (¢, min_sup). If there are multiple occurrences

of t in the same transaction, then the union of the can-
didate supertrees from these occurrences is taken as
the candidate supertrees for the transaction. Again, we
can see that computing B™ (¢, min _sup) is not an ex-
pensive operation, although it is slightly more expen-
sive than computing B®™ (¢, min _sup) . In addition, we
can see that the computations of B°(¢, min _sup) and
B™(t, min_sup) do not involve storing any support,
and the computations may be terminated before visit-
ing all the occurrences of r. Whenever the intersection
of candidate supertrees becomes empty, the rest of the
occurrences can be skipped.

3) Compute B"(t, min _sup,)

Computing B" (¢, min _ sup,), however, is rela-
tively expensive for the following reason. Again, each
transaction has candidate supertrees for B" (¢, min _
sup,), and if there are multiple occurrences of ¢ in a
transaction, the union of the candidate supertrees from
each of these occurrences is the set of candidate super-
trees from the transaction. This time, however, instead
of a simple intersection, the union of all the candidate
supertrees from each transaction is used. Furthermore,
the support of each candidate supertree must be stored
and updated in the process, although a large part of
the candidate supertrees may ultimately turn out to be
infrequent. Therefore, computing B"(7, min _sup,) can
be relatively expensive.

Based on the above analysis, in order to avoid
computing B (#, min_sup,) as much as possible, we
adopt the following order to compute the three sub-
sets:

(D Compute B (¢, min_sup). If 3+ e Boy (¢,

oM
right

apply theorem 2. In either case, there is no need to

min _sup), prune ¢; else if 3¢ e B, (¢, min _sup),
compute B™ (¢, min_sup) or B" (¢, min_ sup,), be-
cause ¢ is not maximal w. r. t. min _sup,.

(2 Extend ¢ by the way of right-most extension,
get Bright

@ Compute B™ (¢, min_sup) if B (¢, min _
sup) =). If B™ (¢, min_sup) # (7, there is no need
to compute B"(#, min _sup,), because ¢ is not maximal

(t, min _sup).

Ww. 1. t. min _sup,.
@ Get BL,, (t, min_sup,) if B°™ (¢, min_sup) =

right
) and B™ (1, min_sup) = (J. By, (#, min_sup,) =
(t'|t e B, (2, min_sup) s. t. sup(¢’) =min_sup, }.
If Bfight(t, min_sup,) # (7, then there is no need to

compute Bl (t, min_sup,), because ¢ is not maximal
Ww. I. t. min _sup;.
(5 Compute By, (¢, min_sup,) if B°™ (¢, min _

52 Wang Tao, and Lu Yansheng

sup) =, B™ (¢, min_sup) =, and Bigm

sup,) = (. If B}, (t, min_sup,) =, then ¢ is maxi-
mal w. r. t. min_ sup,, otherwise, ¢ is not maximal

(t, min _

W. T. t. min _sup,.

We summarize the algorithm for constructing an
M _base as follows.

Algorithm 1 BmMining(D, min _sup, k%)

Input: a database of labeled rooted ordered trees
D, the minimum support threshold min _sup, and error
bound k%

Output: an M _base B, w.r.t. ¢

B, =

C =frequent 1 — trees(D, min _sup);

BmSpan (C, B,,, D, min _sup);

return B,,.

Algorithm 2 BmSpan(C, B

Input: a set of frequent 1-trees C, an M _base B,,

D, min _sup)

m?

w. 1. t. £, a database of labeled rooted ordered trees D,
and the minimum support threshold min _sup

Output: an M _base B,, w.r.t. £
For each t e C do {

compute BM (¢, min _ sup) ;

if 3¢ e BOY(t, min _sup) then continue;

E=(;

for each vertex v on the rightmost path of ¢ do {
/ % (in a bottom-up fashion) =/
for each valid new rightmost vertex w of ¢ do {
t'« t plus vertex w, with v as w’s parent;
if sup(#') =min_sup then E = E U {r'};

}

if 31" e ngf“(t, min _ sup) s. t. v is the parent of ¢'\¢
then break;

}

if E#(/J then BmSpan(E, B,,, D, min _ sup) ;

if BOM (¢, min _ sup) =/ then compute B™(¢, min _ sup) ;

if B°M (¢, min _sup) = and B™ (7, min _sup) = then {

i =max{j ‘ sup(#) =min _sup; };

Bl (f, min_sup;) = {7’ |t € E s. t. sup(#') = min _
sup; };
if By, (1, min _sup;) = then {

compute Bl (z, min _sup,);

if Bl (z, min _sup,;) = then B,, = B,, U {t}; }

}
S Experiments

To evaluate the effectiveness and efficiency of
condensed ST _ bases, we conducted a set of experi-
ments. All the experiments are performed on a 2 GHz
Pentium PC machine with 1 GB main memory, run-
ning Microsoft Windows 2000. All the programs are
coded using Microsoft Visual C ++6. 0.

The synthetic dataset we used for our experi-
ments is generated using the tree generation program

described in Ref. [1]. In brief, a mother tree is gener-
ated first with the following parameters: the number of
distinct node labels N = 100, the total number of
nodes in the tree M = 10", the maximal depth of the
tree D = 10 and the maximum fanout F = 10. The
dataset is then generated by creating subtrees of the
mother tree. In our experiments, we set the total num-
ber of trees in the dataset to be 7 = 10°. The average
number of nodes in each tree is 6. 94.

The compression effects of condensed ST _ base
can be measured by compression ratio § defined as
follows: § = (# of subtrees in the condensed ST _
base)/(total # of frequent subtrees). Clearly, the
smaller the compression ratio is, the better the com-
pression effect is.

First, we fix the support the threshold and test the
compression ratio with respect to various error
bounds. The result is shown in Fig. 1. Here, the error
bound is set as a percentage of the total number of
transactions in the dataset. As can be seen, the larger
the error bound is, the better the compression ratio is.

1

Compression
ratio/ %
(=2 SN N i)

| | | | | | |
0 0.2 04 0.6 0.8 1.0 1.2 1.4
Error bound/ %

Fig.1 Compression ratio of B,, w.r.t. error bound (min _
sup =0.01%)

In order to test the efficiency of computing con-
densed ST _ bases, we compare the runtime of
FREQT'” and BmSpan with respect to the support
threshold in Fig. 2. The error bound is set to 1% . The
rate of increase in runtime for BmSpan is much slower
than that for FREQT as the support threshold decrea-
ses. And when the support threshold is low, the trends
in runtime of BmSpan and FREQT become more
distinct.

%

Runtime/s
_ =
<

_2

0™ 107* 1072 107 10 10'
Support threshold/ %
Fig.2 Runtime w. r. t. support threshold (error bound =1%)

In addition, to check the effect of the heuristic
order of computation that is introduced in section 4,
we reverse the order of computation such that B (¢,
min _sup,) is always computed first. This version of

Mining condensed frequent subtree base 53

BmSpan is called BmSpan _x. We compare the runt-
ime of BmSpan _x and BmSpan with respect to the
support threshold in Fig. 3. The error bound is set to
1% . As can be seen, BmSpan _x always performs
worse than BmSpan.

10* —o— BmSpan_ x

@ 10° —a— BmSpan

£

E 10!
100 1 1 1 1 |
0% 107* 1072 107! 10 10!

Support threshold/ %
Fig.3 Runtime w. r. t. support threshold (error bound =1%)

In summary, condensed ST _ bases can achieve
non-trivial compression for frequent subtrees; the lar-
ger the error bound is, the more we compress. Error
bound can help to make the condensed ST _ bases
more compact. BmSpan is much faster than FREQT,
so BmSpan is an efficient algorithm for computing a
condensed ST _base.

6 Conclusion

In this paper, we introduce and consider the prob-
lem of mining a condensed frequent subtree base from
databases of rooted labeled ordered trees. The notion
of a condensed ST _base is introduced to significantly
reduce the set of subtrees that need to be mined,
stored, and analyzed, while providing guaranteed error
bound for frequencies of subtrees is not in the base.
An algorithm is developed to mine condensed ST _ba-
ses. Various pruning and heuristic techniques are used
in the algorithm to reduce the search space and to im-

prove the computational efficiency. Experimental re-
sults show that we can achieve a substantial compres-
sion ratio of condensation using the condensed ST _
bases, and our algorithm is efficient. As for future
work, it will be interesting to explore other effective
condensed ST _bases and efficient mining methods.

References

[1] Zaki M J. Efficiently mining frequent trees in a forest
[C1//8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Alberta, Canada,
2002: 68 —75.

[2] Asai T, Abe K, Kawasoe S, et al. Efficient substructure
discovery from large semi-structured data [C]//Proc
2002 SIAM Int Conf on Data Mining (SDM’02) . Arling-
ton, VA, 2002: 457 —473.

[3] PeiJ, Dong G, Zou W, et al. On computing condensed fre-
quent pattern bases [C]//Proc 2002 Int Conf on Data
Mining (ICDM’02) . Maebashi, Japan, 2002: 378 —385.

[4] Wang C, Hong M, Pei J, et al. Efficient pattern-growth
methods for frequent tree pattern mining [C]//The
Eighth Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD’04) . Sydney, Australia, 2004:
441 —451.

[5] Chi Y, Yang Y, Xia Y, et al. CMTreeMiner: mining both
closed and maximal frequent subtrees [C]//The Eighth
Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD’04) . Sydney, Australia, 2004: 63
—-73.

[6] Kudo T. FREQT: an implementation of FREQT [EB/
OL]. (2003-03-21) [2004-12-15] . http: //chasen. org/ ~
taku/software/freqt/.

IS EFRBEE

i %

PR

P AR T FAA T HHAF R, KX 430074)

WO A T MRS XASIR 7 S5 T A 69 20 B 8% K K8 194

AT IR T A R A

& AR A w AR T — R 5] A A BMA S R TR, CRAMET R — T &, TH R
THME—IRE T A0 L, SRR 2R A AR N - T —ANETAFT W ARG A A 8g

B AL IR IZAP T AL B R Sk 2 A

LR R RAY Tk RRA A R R R R R AR

T A R 8 I AR A A K%i{b FIH— B R TRAERRKAE TG 2L, ERAT BAXMWEAK

k2 HE S0 ST AT R RN B 3 S
Fokey b ke R H R RS,
KR BB AR BAR X T AP) AR
HES2S TP31I

e 2E R R Wik A

8RR B A 10% ,

